Таблица интегралов

Таблица интегралов представляет собой набор интегралов от различных функций, таких как:

Сама таблица:
интегралы от рациональных функций интегралы от логарифмических функций
интегралы от экспоненциальных функций интегралы от иррациональных функций
интегралы от тригонометрических функций интегралы от гиперболических функций
Скачать таблицу интегралов в PDF формате как шпаргалку
Видео примеры использования таблицы интегралов

Эти интегралы в основном от элементарных функций и эта таблица приведена ниже:

В колонках этой таблицы:

Получается, что ваша задача здесь научиться не только пользоваться таблицей интегралов, но и научиться вычислять интегралы с помощью калькулятора онлайн на этом сайте kontrolnaya-rabota.ru. Сам калькулятор интегралов находится по ссылке решение интегралов онлайн. Самое интересное, он умеет выдавать не только ответ, но и подробное решение бесплатно!

Пожалуйста, пишите, что вам не понятно будет на почту mail@kontrolnaya-rabota.ru о недостатках данной таблицы, чтобы вы хотели видеть еще здесь.

Видео примеры по использованию таблицы

Неопределенные интегралы:
Определенные интегралы:
Таблица интегралов
Формула Примечание
Рациональные функции (пример по использованию таблицы интегралов x^2/(a*x+b))
$$\int 0\, dx = C$$ Интеграл от нуля равен постоянной C
$$\int a\, dx = a*x + C$$ Интеграл от постоянной a равен этой постоянной, умноженной на x и плюс постоянная C
$$\int x^{n}\, dx = \frac{x^{n}}{n + 1} + C$$ при $n \ne 1$ Интеграл x в степени n (n не равна единице), равен x в степени n плюс один и все это деленное на n плюс один и все это плюс постоянная C
$$\int \frac{dx}{x} = \int x^{-1}\, dx = \ln{\left (x \right )} + C$$ Интеграл от единицы, деленной на x равен натуральному логарифму от x плюс постоянная C
$$\int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a}\operatorname{arctg}{\left (\frac{x}{a} \right )} + C$$ $$ = -\frac{1}{a}\operatorname{arcctg}{\left (\frac{x}{a} \right )} + C$$ Интеграл от единицы, деленной на сумму x в квадрате плюс a в квадрате равен арктангенсу от x, деленному на a и все это разделено на a
$$\int \frac{dx}{x^{2} - a^{2}} = \frac{1}{2 a} \operatorname{ln}\left|{\frac{- a + x}{a + x}}\right| + C$$ Интеграл от единицы, деленной на разницу x в квадрате минус a в квадрате равен натуральному логарифму от модуля деления x-a на x + a и весь этот логарифм делен на произведение 2a
Логарифмические функции (пример использования таблицы интегралов ln2(x))
$$\int \operatorname{ln}\left(x\right)\,dx = x \operatorname{ln}\left(x\right) - x + C$$ Интеграл от натуральной логарифической функции равен произведению x на натуральный логарифм и минус переменная x
$$\int \frac{dx}{x \operatorname{ln}\left(x\right)} = \operatorname{ln}\left(\operatorname{ln}\left(x\right)\right) + C$$ Integral от единицы, деленной на произведение x на натуральный логарифм равняется логарифму от логарифма от x - по сути получается такая сложная функция
$$\int \operatorname{log}_{b}\left(x\right)\,dx = x \operatorname{log}_{b}\left(x\right) - \operatorname{log}_{b}\left(e\right) + C$$ Интеграл от логарифма от x по основанию b равен произведению x на логарифм от x по основанию b минус логарифм от экспоненты по основанию b
Экспоненциальные функции (например, как использовать таблицу интегралов ecxsin(bx))
$$\int e^{x}\,dx = e^{x} + C$$ Значение интеграла от экспоненты в степени x равно самой экспоненте от x плюс константа C
$$\int a^{x}\,dx = \frac{a^{x}}{\operatorname{ln}\left(a\right)} + C$$ Интеграл от числа a в степени x равняется a в степени x, деленное на натуральный логарифм от a
Иррациональные функции (к примеру, таблица интегралов действии: x3(x2 + 1)3/2)
$$\int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \operatorname{arcsin}\left(\frac{x}{a}\right) + C$$ Интегральное выражение от 1 деленного на корень квадратный из разницы a в квадрате минус x в квадрате равняется арксинусу от деления x на a
$$\int \frac{- dx}{\sqrt{a^{2} - x^{2}}} = \operatorname{arccos}\left(\frac{x}{a}\right) + C$$ Этот же интеграл, но со знаком минус равен арккосинусу от деления x на a
$$\int \frac{dx}{x \sqrt{x^{2} - a^{2}}} = \frac{1}{a} \operatorname{arcsec} \frac{\left|x\right|}{a} + C$$
$$\int \frac{dx}{\sqrt{x^{2} \pm a^{2}}} = \operatorname{ln}\left| x + \sqrt{x^{2} \pm a^{2}}\right| + C$$
Тригонометрические функции (пример для таблицы интегралчиков sin(c1*x)*sin(c2*x))
$$\int \operatorname{sin}\left(x\right)\,dx = - \operatorname{cos}\left(x\right) + C$$ Интеграл от функции синус от x равен минус косинусу от того же x
$$\int \operatorname{cos}\left(x\right)\,dx = \operatorname{sin}\left(x\right) + C$$ Интеграл от функции косинус от x равен синусу от x
$$\int \operatorname{tg}\left(x\right)\,dx = \frac{1}{2} \operatorname{ln}\left(\operatorname{tg}^{2}\left(x\right) + 1\right) + C$$ Интегральное от тангенса от x равно одной второй от логарифма от суммы тангенса в квадрате от x плюс один
$$\int \frac{dx}{\operatorname{tg}\left(x\right)} = - \frac{1}{2} \operatorname{ln}\left(\operatorname{tg}^{2}\left(x\right) + 1\right) + \operatorname{ln}\left(\operatorname{tg}\left(x\right)\right) + C$$
$$\int \frac{dx}{\operatorname{cos}\left(x\right)} = - \frac{1}{2} \operatorname{ln}\left(\operatorname{sin}\left(x\right) -1\right) + \frac{1}{2} \operatorname{ln}\left(\operatorname{sin}\left(x\right) + 1\right) + C$$
$$\int \frac{dx}{\operatorname{sin}\left(x\right)} = \frac{1}{2} \operatorname{ln}\left(\operatorname{cos}\left(x\right) -1\right) - \frac{1}{2} \operatorname{ln}\left(\operatorname{cos}\left(x\right) + 1\right) + C$$
$$\int \frac{dx}{\operatorname{cos}^{2}\left(x\right)} = \frac{\operatorname{sin}\left(x\right)}{\operatorname{cos}\left(x\right)} + C$$ интегралиус от 1 деленной на косинус в квадрате от x равен синусу от x, деленному на косинус от x
$$\int \frac{dx}{\operatorname{sin}^{2}\left(x\right)} = - \frac{\operatorname{cos}\left(x\right)}{\operatorname{sin}\left(x\right)} + C$$ интегрализэ от единицы, деленной на синус в квадрате от x равен минус косинусу от x, деленному на синус от x
$$\int \frac{\operatorname{tg}\left(x\right)}{\operatorname{cos}\left(x\right)}\,dx = \frac{1}{\operatorname{cos}\left(x\right)} + C$$
$$\int \frac{dx}{\operatorname{sin}\left(x\right) \operatorname{tg}\left(x\right)} = \frac{1}{\operatorname{sin}\left(x\right)} + C$$
$$\int \operatorname{sin}^{2}\left(x\right)\,dx = \frac{1}{2} x - \frac{1}{2} \operatorname{sin}\left(x\right) \operatorname{cos}\left(x\right) + C$$
$$\int \operatorname{cos}^{2}\left(x\right)\,dx = \frac{1}{2} x + \frac{1}{2} \operatorname{sin}\left(x\right) \operatorname{cos}\left(x\right) + C$$
$$\int \operatorname{arctg}\left(x\right)\,dx = x \operatorname{arctg}\left(x\right) - \frac{1}{2} \operatorname{ln}\left(x^{2} + 1\right) + C$$
$$\int \operatorname{sin}^{n} \left(x\right)\,dx = - \frac{\operatorname{sin}^{n-1}\left(x\right)*x*\operatorname{cos}\left(x\right)}{n} + \frac{n-1}{n} \int \operatorname{sin}^{n-2}\left(x\right)\,dx$$ при $n \geq 2, n \in \mathbb{N}$
$$\int \operatorname{cos}^{n} \left(x\right)\,dx = \frac{\operatorname{cos}^{n-1}\left(x\right)*x*\operatorname{sin}\left(x\right)}{n} + \frac{n-1}{n} \int \operatorname{cos}^{n-2}\left(x\right)\,dx$$ при $n \geq 2, n \in \mathbb{N}$
Гиперболические функции (ну и пример использования таблицы здесь 1/сosh(c*x))
$$\int \operatorname{sh}\left(x\right)\,dx = \operatorname{ch}\left(x\right) + C$$ Интеграл от гипорболического синуса от x равен гиперболическому косинусу от x
$$\int \operatorname{ch}\left(x\right)\,dx = \operatorname{sh}\left(x\right) + C$$ Интеграл от гипорболического косинуса от x равен гиперболическому синусу от x
$$\int \frac{dx}{\operatorname{ch}^{2}\left(x\right)} = \frac{2 \operatorname{th}\left(\frac{x}{2}\right)}{\operatorname{th}^{2}\left(\frac{x}{2}\right) + 1} + C$$
$$\int \frac{dx}{\operatorname{sh}^{2}\left(x\right)} = - \frac{1}{2} \operatorname{th}\left(\frac{x}{2}\right) - \frac{1}{2 \operatorname{th}\left(\frac{x}{2}\right)} + C$$
$$\int \operatorname{th}\left(x\right)\,dx = x - \operatorname{ln}\left(\operatorname{th}\left(x\right) + 1\right) + C$$
$$\int \frac{dx}{\operatorname{sh}\left(x\right)} = \operatorname{ln}\left(\operatorname{th} \frac{x}{2}\right) + C$$
$$\int \frac{dx}{\operatorname{ch}\left(x\right)} = \operatorname{arctg}\left(\operatorname{sh}\left(x\right)\right) + C$$
$$\int \frac{dx}{\operatorname{th}\left(x\right)} = x - \operatorname{ln}\left(\operatorname{th}\left(x\right) + 1\right) + \operatorname{ln}\left(\operatorname{th}\left(x\right)\right) + C$$