Быстрый ответ
$$s_{1} = 6 \sqrt{231 + 15 \sqrt{241}}$$
=
$$6 \sqrt{231 + 15 \sqrt{241}}$$
=
129.224820897459
$$x_{1} = \sqrt{\frac{231}{20} + \frac{3 \sqrt{241}}{4}}$$
=
$$\frac{1}{10} \sqrt{1155 + 75 \sqrt{241}}$$
=
4.81592473178257
$$h_{1} = \frac{1}{32} \sqrt{1565 + 101 \sqrt{241}} \left(- 25 \sqrt{2} + \sqrt{482}\right)$$
=
$$\frac{1}{32} \sqrt{1565 + 101 \sqrt{241}} \left(- 25 \sqrt{2} + \sqrt{482}\right)$$
=
-23.4400329464931
$$r_{1} = - \sqrt{\frac{3 \sqrt{241}}{4} + \frac{75}{4}}$$
=
$$- \frac{1}{2} \sqrt{3 \sqrt{241} + 75}$$
=
-5.51299655561248
$$s_{2} = - 6 \sqrt{231 + 15 \sqrt{241}}$$
=
$$- 6 \sqrt{231 + 15 \sqrt{241}}$$
=
-129.224820897459
$$x_{2} = - \sqrt{\frac{231}{20} + \frac{3 \sqrt{241}}{4}}$$
=
$$- \frac{1}{10} \sqrt{1155 + 75 \sqrt{241}}$$
=
-4.81592473178257
$$h_{2} = \frac{1}{32} \sqrt{1565 + 101 \sqrt{241}} \left(- 25 \sqrt{2} + \sqrt{482}\right)$$
=
$$\frac{1}{32} \sqrt{1565 + 101 \sqrt{241}} \left(- 25 \sqrt{2} + \sqrt{482}\right)$$
=
-23.4400329464931
$$r_{2} = \sqrt{\frac{3 \sqrt{241}}{4} + \frac{75}{4}}$$
=
$$\frac{1}{2} \sqrt{3 \sqrt{241} + 75}$$
=
5.51299655561248
$$s_{3} = - 6 \sqrt{231 + 15 \sqrt{241}}$$
=
$$- 6 \sqrt{231 + 15 \sqrt{241}}$$
=
-129.224820897459
$$x_{3} = - \sqrt{\frac{231}{20} + \frac{3 \sqrt{241}}{4}}$$
=
$$- \frac{1}{10} \sqrt{1155 + 75 \sqrt{241}}$$
=
-4.81592473178257
$$h_{3} = \frac{1}{32} \sqrt{1565 + 101 \sqrt{241}} \left(- \sqrt{482} + 25 \sqrt{2}\right)$$
=
$$\frac{1}{32} \sqrt{1565 + 101 \sqrt{241}} \left(- \sqrt{482} + 25 \sqrt{2}\right)$$
=
23.4400329464931
$$r_{3} = - \sqrt{\frac{3 \sqrt{241}}{4} + \frac{75}{4}}$$
=
$$- \frac{1}{2} \sqrt{3 \sqrt{241} + 75}$$
=
-5.51299655561248
$$s_{4} = 6 \sqrt{231 + 15 \sqrt{241}}$$
=
$$6 \sqrt{231 + 15 \sqrt{241}}$$
=
129.224820897459
$$x_{4} = \sqrt{\frac{231}{20} + \frac{3 \sqrt{241}}{4}}$$
=
$$\frac{1}{10} \sqrt{1155 + 75 \sqrt{241}}$$
=
4.81592473178257
$$h_{4} = \frac{1}{32} \sqrt{1565 + 101 \sqrt{241}} \left(- \sqrt{482} + 25 \sqrt{2}\right)$$
=
$$\frac{1}{32} \sqrt{1565 + 101 \sqrt{241}} \left(- \sqrt{482} + 25 \sqrt{2}\right)$$
=
23.4400329464931
$$r_{4} = \sqrt{\frac{3 \sqrt{241}}{4} + \frac{75}{4}}$$
=
$$\frac{1}{2} \sqrt{3 \sqrt{241} + 75}$$
=
5.51299655561248
$$s_{5} = 6 \sqrt{- 15 \sqrt{241} + 231}$$
=
$$6 \sqrt{- 15 \sqrt{241} + 231}$$
=
8.18867119747843*i
$$x_{5} = i \sqrt{- \frac{231}{20} + \frac{3 \sqrt{241}}{4}}$$
=
$$\frac{1}{10} \sqrt{- 75 \sqrt{241} + 1155}$$
=
0.305173757382606*i
$$h_{5} = - \frac{1}{32} \sqrt{- 101 \sqrt{241} + 1565} \left(\sqrt{482} + 25 \sqrt{2}\right)$$
=
$$- \frac{1}{32} \sqrt{- 101 \sqrt{241} + 1565} \left(\sqrt{482} + 25 \sqrt{2}\right)$$
=
-3.07166803751324*i
$$r_{5} = - \sqrt{- \frac{3 \sqrt{241}}{4} + \frac{75}{4}}$$
=
$$- \frac{1}{2} \sqrt{- 3 \sqrt{241} + 75}$$
=
-2.66587114801241
$$s_{6} = - 6 \sqrt{- 15 \sqrt{241} + 231}$$
=
$$- 6 \sqrt{- 15 \sqrt{241} + 231}$$
=
-8.18867119747843*i
$$x_{6} = - i \sqrt{- \frac{231}{20} + \frac{3 \sqrt{241}}{4}}$$
=
$$- \frac{1}{10} \sqrt{- 75 \sqrt{241} + 1155}$$
=
-0.305173757382606*i
$$h_{6} = - \frac{1}{32} \sqrt{- 101 \sqrt{241} + 1565} \left(\sqrt{482} + 25 \sqrt{2}\right)$$
=
$$- \frac{1}{32} \sqrt{- 101 \sqrt{241} + 1565} \left(\sqrt{482} + 25 \sqrt{2}\right)$$
=
-3.07166803751324*i
$$r_{6} = \sqrt{- \frac{3 \sqrt{241}}{4} + \frac{75}{4}}$$
=
$$\frac{1}{2} \sqrt{- 3 \sqrt{241} + 75}$$
=
2.66587114801241
$$s_{7} = - 6 \sqrt{- 15 \sqrt{241} + 231}$$
=
$$- 6 \sqrt{- 15 \sqrt{241} + 231}$$
=
-8.18867119747843*i
$$x_{7} = - i \sqrt{- \frac{231}{20} + \frac{3 \sqrt{241}}{4}}$$
=
$$- \frac{1}{10} \sqrt{- 75 \sqrt{241} + 1155}$$
=
-0.305173757382606*i
$$h_{7} = \frac{1}{32} \sqrt{- 101 \sqrt{241} + 1565} \left(\sqrt{482} + 25 \sqrt{2}\right)$$
=
$$\frac{1}{32} \sqrt{- 101 \sqrt{241} + 1565} \left(\sqrt{482} + 25 \sqrt{2}\right)$$
=
3.07166803751324*i
$$r_{7} = - \sqrt{- \frac{3 \sqrt{241}}{4} + \frac{75}{4}}$$
=
$$- \frac{1}{2} \sqrt{- 3 \sqrt{241} + 75}$$
=
-2.66587114801241
$$s_{8} = 6 \sqrt{- 15 \sqrt{241} + 231}$$
=
$$6 \sqrt{- 15 \sqrt{241} + 231}$$
=
8.18867119747843*i
$$x_{8} = i \sqrt{- \frac{231}{20} + \frac{3 \sqrt{241}}{4}}$$
=
$$\frac{1}{10} \sqrt{- 75 \sqrt{241} + 1155}$$
=
0.305173757382606*i
$$h_{8} = \frac{1}{32} \sqrt{- 101 \sqrt{241} + 1565} \left(\sqrt{482} + 25 \sqrt{2}\right)$$
=
$$\frac{1}{32} \sqrt{- 101 \sqrt{241} + 1565} \left(\sqrt{482} + 25 \sqrt{2}\right)$$
=
3.07166803751324*i
$$r_{8} = \sqrt{- \frac{3 \sqrt{241}}{4} + \frac{75}{4}}$$
=
$$\frac{1}{2} \sqrt{- 3 \sqrt{241} + 75}$$
=
2.66587114801241