log(5)*(5^x-4)=1-x (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: log(5)*(5^x-4)=1-x

    Решение

    Вы ввели [src]
           / x    \        
    log(5)*\5  - 4/ = 1 - x
    (5x4)log(5)=1x\left(5^{x} - 4\right) \log{\left(5 \right)} = 1 - x
    График
    02468-8-6-4-210-50000000100000000
    Быстрый ответ [src]
            / 1 + log(625)    2   \      / 1 + log(625)\
         - W\5            *log (5)/ + log\5            /
    x1 = -----------------------------------------------
                              log(5)                    
    x1=W(51+log(625)log(5)2)+log(51+log(625))log(5)x_{1} = \frac{- W\left(5^{1 + \log{\left(625 \right)}} \log{\left(5 \right)}^{2}\right) + \log{\left(5^{1 + \log{\left(625 \right)}} \right)}}{\log{\left(5 \right)}}
    Сумма и произведение корней [src]
    сумма
           / 1 + log(625)    2   \      / 1 + log(625)\
        - W\5            *log (5)/ + log\5            /
    0 + -----------------------------------------------
                             log(5)                    
    0+W(51+log(625)log(5)2)+log(51+log(625))log(5)0 + \frac{- W\left(5^{1 + \log{\left(625 \right)}} \log{\left(5 \right)}^{2}\right) + \log{\left(5^{1 + \log{\left(625 \right)}} \right)}}{\log{\left(5 \right)}}
    =
       / 1 + log(625)    2   \      / 1 + log(625)\
    - W\5            *log (5)/ + log\5            /
    -----------------------------------------------
                         log(5)                    
    W(51+log(625)log(5)2)+log(51+log(625))log(5)\frac{- W\left(5^{1 + \log{\left(625 \right)}} \log{\left(5 \right)}^{2}\right) + \log{\left(5^{1 + \log{\left(625 \right)}} \right)}}{\log{\left(5 \right)}}
    произведение
         / 1 + log(625)    2   \      / 1 + log(625)\
      - W\5            *log (5)/ + log\5            /
    1*-----------------------------------------------
                           log(5)                    
    1W(51+log(625)log(5)2)+log(51+log(625))log(5)1 \frac{- W\left(5^{1 + \log{\left(625 \right)}} \log{\left(5 \right)}^{2}\right) + \log{\left(5^{1 + \log{\left(625 \right)}} \right)}}{\log{\left(5 \right)}}
    =
       / 1 + log(625)    2   \      / 1 + log(625)\
    - W\5            *log (5)/ + log\5            /
    -----------------------------------------------
                         log(5)                    
    W(51+log(625)log(5)2)+log(51+log(625))log(5)\frac{- W\left(5^{1 + \log{\left(625 \right)}} \log{\left(5 \right)}^{2}\right) + \log{\left(5^{1 + \log{\left(625 \right)}} \right)}}{\log{\left(5 \right)}}
    Численный ответ [src]
    x1 = 0.873448630586832
    График
    log(5)*(5^x-4)=1-x (уравнение) /media/krcore-image-pods/hash/equation/c/71/27799d1bc3fc919ce27c5bdf36e50.png