log(5)*(5^x-4)=1-x (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: log(5)*(5^x-4)=1-x
Решение
График
/ 1 + log(625) 2 \ / 1 + log(625)\
- W\5 *log (5)/ + log\5 /
x1 = -----------------------------------------------
log(5)
x1=log(5)−W(51+log(625)log(5)2)+log(51+log(625))
Сумма и произведение корней
[src] / 1 + log(625) 2 \ / 1 + log(625)\
- W\5 *log (5)/ + log\5 /
0 + -----------------------------------------------
log(5)
0+log(5)−W(51+log(625)log(5)2)+log(51+log(625)) / 1 + log(625) 2 \ / 1 + log(625)\
- W\5 *log (5)/ + log\5 /
-----------------------------------------------
log(5)
log(5)−W(51+log(625)log(5)2)+log(51+log(625)) / 1 + log(625) 2 \ / 1 + log(625)\
- W\5 *log (5)/ + log\5 /
1*-----------------------------------------------
log(5)
1log(5)−W(51+log(625)log(5)2)+log(51+log(625)) / 1 + log(625) 2 \ / 1 + log(625)\
- W\5 *log (5)/ + log\5 /
-----------------------------------------------
log(5)
log(5)−W(51+log(625)log(5)2)+log(51+log(625))