Дано уравнение: (x2−9)−x2+8x−15=0 Т.к. правая часть ур-ния равна нулю, то решение у ур-ния будет, если хотя бы один из множителей в левой части ур-ния равен нулю. Получим ур-ния x2−9=0 −x2+8x−15=0 решаем получившиеся ур-ния: 1. x2−9=0 Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения: x1=2aD−b x2=2a−D−b где D = b^2 - 4*a*c - это дискриминант. Т.к. a=1 b=0 c=−9 , то
Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения: x3=2aD−b x4=2a−D−b где D = b^2 - 4*a*c - это дискриминант. Т.к. a=−1 b=8 c=−15 , то