Подробное решение
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.
Уравнение превратится из
$$x^{2} + 3 x + 9 = 12$$
в
$$x^{2} + 3 x + 9 - 12 = 0$$
Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
$$a = 1$$
$$b = 3$$
$$c = -3$$
, то
D = b^2 - 4 * a * c =
(3)^2 - 4 * (1) * (-3) = 21
Т.к. D > 0, то уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
$$x_{1} = - \frac{3}{2} + \frac{\sqrt{21}}{2}$$
$$x_{2} = - \frac{\sqrt{21}}{2} - \frac{3}{2}$$