sin(x)=(log(x-3)/log(3)) (уравнение)

Уравнение с неизвестным  :

Искать численное решение на промежутке [, ]

    Найду корень уравнения: sin(x)=(log(x-3)/log(3))

    Решение

    Вы ввели
    [LaTeX]
             log(x - 3)
    sin(x) = ----------
               log(3)  
    $$\sin{\left (x \right )} = \frac{\log{\left (x - 3 \right )}}{\log{\left (3 \right )}}$$
    График
    [LaTeX]
    Численный ответ
    [LaTeX]
    x1 = -99.5619880182 + 2.31532327103*i
    x2 = -18.0789210808 - 2.06069911613*i
    x3 = -43.1030098804 + 2.19106179833*i
    x4 = -80.7333533421 - 2.2846440333*i
    x5 = 3.60935531208000
    x6 = -5.66348679326 + 1.90091085469*i
    x7 = -55.6403008904 - 2.22938131008*i
    x8 = -87.0089499554 - 2.2956409104*i
    x9 = 7.68541750567 - 0.909707038772*i
    x10 = -99.5619880182 - 2.31532327103*i
    x11 = -93.2851921568 + 2.30583209302*i
    x12 = -36.838431028 - 2.16739977313*i
    x13 = -18.0789210808 + 2.06069911613*i
    x14 = -24.3235972776 + 2.10490470023*i
    x15 = -55.6403008904 + 2.22938131008*i
    x16 = -68.1845913526 - 2.25967466015*i
    x17 = -30.5779752858 + 2.13931774117*i
    x18 = 7.68541750567 + 0.909707038772*i
    x19 = -49.370547922 - 2.21146852428*i
    x20 = -11.8517360294 + 1.99940386513*i
    x21 = -68.1845913526 + 2.25967466015*i
    x22 = -80.7333533421 + 2.2846440333*i
    x23 = -49.370547922 + 2.21146852428*i
    x24 = 0.387339492103 + 1.65912289491*i
    x25 = -11.8517360294 - 1.99940386513*i
    x26 = -30.5779752858 - 2.13931774117*i
    x27 = -61.9117665426 + 2.24532460205*i