Подробное решение
Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
$$a = 1$$
$$b = p$$
$$c = -16$$
, то
D = b^2 - 4 * a * c =
(p)^2 - 4 * (1) * (-16) = 64 + p^2
Уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
$$x_{1} = - \frac{p}{2} + \frac{\sqrt{p^{2} + 64}}{2}$$
Упростить$$x_{2} = - \frac{p}{2} - \frac{\sqrt{p^{2} + 64}}{2}$$
Упростить / ___________________________________________ \ ___________________________________________
| / 2 / / 2 2 \\| / 2 / / 2 2 \\
| 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|| 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|
| \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *sin|------------------------------------------|| \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *cos|------------------------------------------|
re(p) | im(p) \ 2 /| \ 2 /
x1 = - ----- + I*|- ----- - -----------------------------------------------------------------------------------------------| - -----------------------------------------------------------------------------------------------
2 \ 2 2 / 2
$$x_{1} = i \left(- \frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{im}{\left(p\right)}}{2}\right) - \frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{re}{\left(p\right)}}{2}$$
/ ___________________________________________ \ ___________________________________________
| / 2 / / 2 2 \\| / 2 / / 2 2 \\
| 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|| 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|
| \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *sin|------------------------------------------|| \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *cos|------------------------------------------|
re(p) | im(p) \ 2 /| \ 2 /
x2 = - ----- + I*|- ----- + -----------------------------------------------------------------------------------------------| + -----------------------------------------------------------------------------------------------
2 \ 2 2 / 2
$$x_{2} = i \left(\frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{im}{\left(p\right)}}{2}\right) + \frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{re}{\left(p\right)}}{2}$$
Сумма и произведение корней
[src] / ___________________________________________ \ ___________________________________________ / ___________________________________________ \ ___________________________________________
| / 2 / / 2 2 \\| / 2 / / 2 2 \\ | / 2 / / 2 2 \\| / 2 / / 2 2 \\
| 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|| 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/| | 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|| 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|
| \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *sin|------------------------------------------|| \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *cos|------------------------------------------| | \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *sin|------------------------------------------|| \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *cos|------------------------------------------|
re(p) | im(p) \ 2 /| \ 2 / re(p) | im(p) \ 2 /| \ 2 /
- ----- + I*|- ----- - -----------------------------------------------------------------------------------------------| - ----------------------------------------------------------------------------------------------- + - ----- + I*|- ----- + -----------------------------------------------------------------------------------------------| + -----------------------------------------------------------------------------------------------
2 \ 2 2 / 2 2 \ 2 2 / 2
$$\left(i \left(- \frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{im}{\left(p\right)}}{2}\right) - \frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{re}{\left(p\right)}}{2}\right) + \left(i \left(\frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{im}{\left(p\right)}}{2}\right) + \frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{re}{\left(p\right)}}{2}\right)$$
/ ___________________________________________ \ / ___________________________________________ \
| / 2 / / 2 2 \\| | / 2 / / 2 2 \\|
| 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|| | 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/||
| \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *sin|------------------------------------------|| | \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *sin|------------------------------------------||
| im(p) \ 2 /| | im(p) \ 2 /|
-re(p) + I*|- ----- + -----------------------------------------------------------------------------------------------| + I*|- ----- - -----------------------------------------------------------------------------------------------|
\ 2 2 / \ 2 2 /
$$i \left(- \frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{im}{\left(p\right)}}{2}\right) + i \left(\frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{im}{\left(p\right)}}{2}\right) - \operatorname{re}{\left(p\right)}$$
/ / ___________________________________________ \ ___________________________________________ \ / / ___________________________________________ \ ___________________________________________ \
| | / 2 / / 2 2 \\| / 2 / / 2 2 \\| | | / 2 / / 2 2 \\| / 2 / / 2 2 \\|
| | 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|| 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|| | | 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/|| 4 / / 2 2 \ 2 2 |atan2\2*im(p)*re(p), 64 + re (p) - im (p)/||
| | \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *sin|------------------------------------------|| \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *cos|------------------------------------------|| | | \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *sin|------------------------------------------|| \/ \64 + re (p) - im (p)/ + 4*im (p)*re (p) *cos|------------------------------------------||
| re(p) | im(p) \ 2 /| \ 2 /| | re(p) | im(p) \ 2 /| \ 2 /|
|- ----- + I*|- ----- - -----------------------------------------------------------------------------------------------| - -----------------------------------------------------------------------------------------------|*|- ----- + I*|- ----- + -----------------------------------------------------------------------------------------------| + -----------------------------------------------------------------------------------------------|
\ 2 \ 2 2 / 2 / \ 2 \ 2 2 / 2 /
$$\left(i \left(- \frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{im}{\left(p\right)}}{2}\right) - \frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{re}{\left(p\right)}}{2}\right) \left(i \left(\frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{im}{\left(p\right)}}{2}\right) + \frac{\sqrt[4]{\left(\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64\right)^{2} + 4 \left(\operatorname{re}{\left(p\right)}\right)^{2} \left(\operatorname{im}{\left(p\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(p\right)} \operatorname{im}{\left(p\right)},\left(\operatorname{re}{\left(p\right)}\right)^{2} - \left(\operatorname{im}{\left(p\right)}\right)^{2} + 64 \right)}}{2} \right)}}{2} - \frac{\operatorname{re}{\left(p\right)}}{2}\right)$$
$$-16$$