Решите уравнение -x^2+x-1=0 (минус х в квадрате плюс х минус 1 равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ОТВЕТ!]

-x^2+x-1=0 (уравнение)

Учитель очень удивится увидев твоё верное решение😉

Уравнение с неизвестным  :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: -x^2+x-1=0

    Решение

    Вы ввели [src]
       2            
    - x  + x - 1 = 0
    $$\left(- x^{2} + x\right) - 1 = 0$$
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = -1$$
    $$b = 1$$
    $$c = -1$$
    , то
    D = b^2 - 4 * a * c = 

    (1)^2 - 4 * (-1) * (-1) = -3

    Т.к. D < 0, то уравнение
    не имеет вещественных корней,
    но комплексные корни имеются.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
    Упростить
    $$x_{2} = \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
    Упростить
    График
    Быстрый ответ [src]
                 ___
         1   I*\/ 3 
    x1 = - - -------
         2      2   
    $$x_{1} = \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
                 ___
         1   I*\/ 3 
    x2 = - + -------
         2      2   
    $$x_{2} = \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
    Сумма и произведение корней [src]
    сумма
            ___           ___
    1   I*\/ 3    1   I*\/ 3 
    - - ------- + - + -------
    2      2      2      2   
    $$\left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right) + \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)$$
    =
    1
    $$1$$
    произведение
    /        ___\ /        ___\
    |1   I*\/ 3 | |1   I*\/ 3 |
    |- - -------|*|- + -------|
    \2      2   / \2      2   /
    $$\left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)$$
    =
    1
    $$1$$
    Теорема Виета
    перепишем уравнение
    $$\left(- x^{2} + x\right) - 1 = 0$$
    из
    $$a x^{2} + b x + c = 0$$
    как приведённое квадратное уравнение
    $$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
    $$x^{2} - x + 1 = 0$$
    $$p x + q + x^{2} = 0$$
    где
    $$p = \frac{b}{a}$$
    $$p = -1$$
    $$q = \frac{c}{a}$$
    $$q = 1$$
    Формулы Виета
    $$x_{1} + x_{2} = - p$$
    $$x_{1} x_{2} = q$$
    $$x_{1} + x_{2} = 1$$
    $$x_{1} x_{2} = 1$$
    Численный ответ [src]
    x1 = 0.5 - 0.866025403784439*i
    x2 = 0.5 + 0.866025403784439*i
    График
    -x^2+x-1=0 (уравнение) /media/krcore-image-pods/hash/equation/4/1f/64f6864034de504a50860cf641b37.png
    ×

    Где учитесь?

    Для правильного составления решения, укажите: