Подробное решение
Дано уравнение:
$$\left(x^{4} - 2 x^{2}\right) + 1 = 0$$
Сделаем замену
$$v = x^{2}$$
тогда ур-ние будет таким:
$$v^{2} - 2 v + 1 = 0$$
Это уравнение вида
a*v^2 + b*v + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$v_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$v_{2} = \frac{- \sqrt{D} - b}{2 a}$$
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
$$a = 1$$
$$b = -2$$
$$c = 1$$
, то
D = b^2 - 4 * a * c =
(-2)^2 - 4 * (1) * (1) = 0
Т.к. D = 0, то корень всего один.
v = -b/2a = --2/2/(1)
$$v_{1} = 1$$
Получаем окончательный ответ:
Т.к.
$$v = x^{2}$$
то
$$x_{1} = \sqrt{v_{1}}$$
$$x_{2} = - \sqrt{v_{1}}$$
тогда:
$$x_{1} = $$
$$\frac{0}{1} + \frac{1 \cdot 1^{\frac{1}{2}}}{1} = 1$$
$$x_{2} = $$
$$\frac{\left(-1\right) 1^{\frac{1}{2}}}{1} + \frac{0}{1} = -1$$