Сократим дробь 1/((r1+r2+1/(c1*p))*(r1*c2*p+r2*c2*p+1))

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
                   1                    
----------------------------------------
/           1  \                        
|r1 + r2 + ----|*(r1*c2*p + r2*c2*p + 1)
\          c1*p/                        
$$\frac{1}{\left(r_{1} + r_{2} + \frac{1}{c_{1} p}\right) \left(p c_{2} r_{1} + p c_{2} r_{2} + 1\right)}$$
Степени [src]
                   1                    
----------------------------------------
                        /           1  \
(1 + c2*p*r1 + c2*p*r2)*|r1 + r2 + ----|
                        \          c1*p/
$$\frac{1}{\left(r_{1} + r_{2} + \frac{1}{c_{1} p}\right) \left(c_{2} p r_{1} + c_{2} p r_{2} + 1\right)}$$
Численный ответ [src]
1/((1.0 + c2*p*r1 + c2*p*r2)*(r1 + r2 + 1/(c1*p)))
Рациональный знаменатель [src]
                      c1*p                     
-----------------------------------------------
(1 + c1*p*r1 + c1*p*r2)*(1 + c2*p*r1 + c2*p*r2)
$$\frac{c_{1} p}{\left(c_{1} p r_{1} + c_{1} p r_{2} + 1\right) \left(c_{2} p r_{1} + c_{2} p r_{2} + 1\right)}$$
Объединение рациональных выражений [src]
                   c1*p                  
-----------------------------------------
(1 + c1*p*(r1 + r2))*(1 + c2*p*(r1 + r2))
$$\frac{c_{1} p}{\left(c_{1} p \left(r_{1} + r_{2}\right) + 1\right) \left(c_{2} p \left(r_{1} + r_{2}\right) + 1\right)}$$
Общее упрощение [src]
                    c1*p                    
--------------------------------------------
(1 + c1*p*(r1 + r2))*(1 + c2*p*r1 + c2*p*r2)
$$\frac{c_{1} p}{\left(c_{1} p \left(r_{1} + r_{2}\right) + 1\right) \left(c_{2} p r_{1} + c_{2} p r_{2} + 1\right)}$$
Комбинаторика [src]
                      c1*p                     
-----------------------------------------------
(1 + c1*p*r1 + c1*p*r2)*(1 + c2*p*r1 + c2*p*r2)
$$\frac{c_{1} p}{\left(c_{1} p r_{1} + c_{1} p r_{2} + 1\right) \left(c_{2} p r_{1} + c_{2} p r_{2} + 1\right)}$$
Общий знаменатель [src]
                                           c1*p                                           
------------------------------------------------------------------------------------------
                                                   2   2          2   2                  2
1 + c1*p*r1 + c1*p*r2 + c2*p*r1 + c2*p*r2 + c1*c2*p *r1  + c1*c2*p *r2  + 2*c1*c2*r1*r2*p 
$$\frac{c_{1} p}{c_{1} c_{2} p^{2} r_{1}^{2} + 2 c_{1} c_{2} p^{2} r_{1} r_{2} + c_{1} c_{2} p^{2} r_{2}^{2} + c_{1} p r_{1} + c_{1} p r_{2} + c_{2} p r_{1} + c_{2} p r_{2} + 1}$$
Раскрыть выражение [src]
                   1                    
----------------------------------------
                        /           1  \
(r1*c2*p + r2*c2*p + 1)*|r1 + r2 + ----|
                        \          c1*p/
$$\frac{1}{\left(p c_{2} r_{1} + p c_{2} r_{2} + 1\right) \left(r_{1} + r_{2} + \frac{1}{c_{1} p}\right)}$$