1
----------------------------------------
/ 1 \
(1 + c2*p*r1 + c2*p*r2)*|r1 + r2 + ----|
\ c1*p/
$$\frac{1}{\left(r_{1} + r_{2} + \frac{1}{c_{1} p}\right) \left(c_{2} p r_{1} + c_{2} p r_{2} + 1\right)}$$
1/((1.0 + c2*p*r1 + c2*p*r2)*(r1 + r2 + 1/(c1*p)))
Рациональный знаменатель
[src] c1*p
-----------------------------------------------
(1 + c1*p*r1 + c1*p*r2)*(1 + c2*p*r1 + c2*p*r2)
$$\frac{c_{1} p}{\left(c_{1} p r_{1} + c_{1} p r_{2} + 1\right) \left(c_{2} p r_{1} + c_{2} p r_{2} + 1\right)}$$
Объединение рациональных выражений
[src] c1*p
-----------------------------------------
(1 + c1*p*(r1 + r2))*(1 + c2*p*(r1 + r2))
$$\frac{c_{1} p}{\left(c_{1} p \left(r_{1} + r_{2}\right) + 1\right) \left(c_{2} p \left(r_{1} + r_{2}\right) + 1\right)}$$
c1*p
--------------------------------------------
(1 + c1*p*(r1 + r2))*(1 + c2*p*r1 + c2*p*r2)
$$\frac{c_{1} p}{\left(c_{1} p \left(r_{1} + r_{2}\right) + 1\right) \left(c_{2} p r_{1} + c_{2} p r_{2} + 1\right)}$$
c1*p
-----------------------------------------------
(1 + c1*p*r1 + c1*p*r2)*(1 + c2*p*r1 + c2*p*r2)
$$\frac{c_{1} p}{\left(c_{1} p r_{1} + c_{1} p r_{2} + 1\right) \left(c_{2} p r_{1} + c_{2} p r_{2} + 1\right)}$$
c1*p
------------------------------------------------------------------------------------------
2 2 2 2 2
1 + c1*p*r1 + c1*p*r2 + c2*p*r1 + c2*p*r2 + c1*c2*p *r1 + c1*c2*p *r2 + 2*c1*c2*r1*r2*p
$$\frac{c_{1} p}{c_{1} c_{2} p^{2} r_{1}^{2} + 2 c_{1} c_{2} p^{2} r_{1} r_{2} + c_{1} c_{2} p^{2} r_{2}^{2} + c_{1} p r_{1} + c_{1} p r_{2} + c_{2} p r_{1} + c_{2} p r_{2} + 1}$$
1
----------------------------------------
/ 1 \
(r1*c2*p + r2*c2*p + 1)*|r1 + r2 + ----|
\ c1*p/
$$\frac{1}{\left(p c_{2} r_{1} + p c_{2} r_{2} + 1\right) \left(r_{1} + r_{2} + \frac{1}{c_{1} p}\right)}$$