3 2
22 + 3*n + 14*n + 22*n
------------------------
2
(2 + n) *(2 + 2*n)
$$\frac{3 n^{3} + 14 n^{2} + 22 n + 22}{\left(n + 2\right)^{2} \left(2 n + 2\right)}$$
(22.0 + 3.0*n^3 + 14.0*n^2 + 22.0*n)/((2.0 + n)^2*(2.0 + 2.0*n))
Рациональный знаменатель
[src] 3 2
22 + 3*n + 14*n + 22*n
------------------------
2
(2 + n) *(2 + 2*n)
$$\frac{3 n^{3} + 14 n^{2} + 22 n + 22}{\left(n + 2\right)^{2} \left(2 n + 2\right)}$$
Объединение рациональных выражений
[src]22 + n*(22 + n*(14 + 3*n))
--------------------------
2
2*(1 + n)*(2 + n)
$$\frac{n \left(n \left(3 n + 14\right) + 22\right) + 22}{2 \left(n + 1\right) \left(n + 2\right)^{2}}$$
3 2
22 + 3*n + 14*n + 22*n
------------------------
2
2*(1 + n)*(2 + n)
$$\frac{3 n^{3} + 14 n^{2} + 22 n + 22}{2 \left(n + 1\right) \left(n + 2\right)^{2}}$$
3 2
22 + 3*n + 14*n + 22*n
------------------------
2
(2 + n) *(2 + 2*n)
$$\frac{3 n^{3} + 14 n^{2} + 22 n + 22}{\left(n + 2\right)^{2} \left(2 n + 2\right)}$$
2
3 -10 + n + 2*n
- - -----------------------
2 3 2
8 + 2*n + 10*n + 16*n
$$- \frac{n^{2} + 2 n - 10}{2 n^{3} + 10 n^{2} + 16 n + 8} + \frac{3}{2}$$
3 2
22 + 3*n + 14*n + 22*n
------------------------
2
2*(1 + n)*(2 + n)
$$\frac{3 n^{3} + 14 n^{2} + 22 n + 22}{2 \left(n + 1\right) \left(n + 2\right)^{2}}$$