2
6 - x
x + ------
1 + x
-----------------
/ 2\
\-1 + x /*(6 + x)
$$\frac{x + \frac{- x^{2} + 6}{x + 1}}{\left(x + 6\right) \left(x^{2} - 1\right)}$$
(x + (6.0 - x^2)/(1.0 + x))/((6.0 + x)*(-1.0 + x^2))
Рациональный знаменатель
[src] 2
6 - x + x*(1 + x)
-------------------------
/ 2\
(1 + x)*\-1 + x /*(6 + x)
$$\frac{- x^{2} + x \left(x + 1\right) + 6}{\left(x + 1\right) \left(x + 6\right) \left(x^{2} - 1\right)}$$
Объединение рациональных выражений
[src] 2
6 - x + x*(1 + x)
-------------------------
/ 2\
(1 + x)*\-1 + x /*(6 + x)
$$\frac{- x^{2} + x \left(x + 1\right) + 6}{\left(x + 1\right) \left(x + 6\right) \left(x^{2} - 1\right)}$$
1
----------------
2 3
-1 + x + x - x
$$\frac{1}{x^{3} + x^{2} - x - 1}$$
2
6 - x
x + ------
1 + x
-----------------
/ 2\
\-1 + x /*(6 + x)
$$\frac{x + \frac{- x^{2} + 6}{x + 1}}{\left(x + 6\right) \left(x^{2} - 1\right)}$$
1
----------------
2 3
-1 + x + x - x
$$\frac{1}{x^{3} + x^{2} - x - 1}$$
1
-----------------
2
(1 + x) *(-1 + x)
$$\frac{1}{\left(x - 1\right) \left(x + 1\right)^{2}}$$