Подстановка условия
[src]2/(9*p - 12*q) - 4/(9*p + 12*q) + 4*p/(16*q^2 - 9*p^2) при q = -4
2 4 4*p
---------- - ---------- + ------------
9*p - 12*q 9*p + 12*q 2 2
16*q - 9*p
$$\frac{4 p}{- 9 p^{2} + 16 q^{2}} + \frac{2}{9 p - 12 q} - \frac{4}{9 p + 12 q}$$
$$- \frac{2}{3 p + 4 q}$$
-2
------------
3*p + 4*(-4)
$$- \frac{2}{4 (-4) + 3 p}$$
4 2 4*p
- ---------- + ----------- + --------------
9*p + 12*q -12*q + 9*p 2 2
- 9*p + 16*q
$$\frac{4 p}{- 9 p^{2} + 16 q^{2}} - \frac{4}{9 p + 12 q} + \frac{2}{9 p - 12 q}$$
2.0/(9.0*p - 12.0*q) - 4.0/(12.0*q + 9.0*p) + 4.0*p/(16.0*q^2 - 9.0*p^2)
Рациональный знаменатель
[src] 4 2 4*p
- ---------- + ----------- + --------------
9*p + 12*q -12*q + 9*p 2 2
- 9*p + 16*q
$$\frac{4 p}{- 9 p^{2} + 16 q^{2}} - \frac{4}{9 p + 12 q} + \frac{2}{9 p - 12 q}$$
/ 2 2\ / 2 2\
- 4*(-12*q + 9*p)*\- 9*p + 16*q / + 2*\- 9*p + 16*q /*(9*p + 12*q) + 4*p*(-12*q + 9*p)*(9*p + 12*q)
-----------------------------------------------------------------------------------------------------
/ 2 2\
(-12*q + 9*p)*\- 9*p + 16*q /*(9*p + 12*q)
$$\frac{4 p \left(9 p - 12 q\right) \left(9 p + 12 q\right) - 4 \cdot \left(9 p - 12 q\right) \left(- 9 p^{2} + 16 q^{2}\right) + 2 \cdot \left(9 p + 12 q\right) \left(- 9 p^{2} + 16 q^{2}\right)}{\left(9 p - 12 q\right) \left(9 p + 12 q\right) \left(- 9 p^{2} + 16 q^{2}\right)}$$
Объединение рациональных выражений
[src] // 2 2\ / 2 2\ \
2*\\- 9*p + 16*q /*(3*p + 4*q) - 2*\- 9*p + 16*q /*(-4*q + 3*p) + 6*p*(-4*q + 3*p)*(3*p + 4*q)/
-------------------------------------------------------------------------------------------------
/ 2 2\
3*\- 9*p + 16*q /*(-4*q + 3*p)*(3*p + 4*q)
$$\frac{2 \cdot \left(6 p \left(3 p - 4 q\right) \left(3 p + 4 q\right) - 2 \cdot \left(3 p - 4 q\right) \left(- 9 p^{2} + 16 q^{2}\right) + \left(3 p + 4 q\right) \left(- 9 p^{2} + 16 q^{2}\right)\right)}{3 \cdot \left(3 p - 4 q\right) \left(3 p + 4 q\right) \left(- 9 p^{2} + 16 q^{2}\right)}$$
$$- \frac{2}{3 p + 4 q}$$
4 2 4*p
- ---------- + ----------- + --------------
9*p + 12*q -12*q + 9*p 2 2
- 9*p + 16*q
$$\frac{4 p}{- 9 p^{2} + 16 q^{2}} - \frac{4}{9 p + 12 q} + \frac{2}{9 p - 12 q}$$
$$- \frac{2}{3 p + 4 q}$$
$$- \frac{2}{3 p + 4 q}$$
Тригонометрическая часть
[src] 4 2 4*p
- ---------- + ----------- + --------------
9*p + 12*q -12*q + 9*p 2 2
- 9*p + 16*q
$$\frac{4 p}{- 9 p^{2} + 16 q^{2}} - \frac{4}{9 p + 12 q} + \frac{2}{9 p - 12 q}$$