Тригонометрическая часть
[src] // 0 for And(im(x) = 0, 15*x mod pi = 0)\ // 1 for And(im(x) = 0, 15*x mod 2*pi = 0)\
|| | || |
|| /15*x\ | || 2/15*x\ |
|| 2*tan|----| | ||1 - tan |----| |
2*|< \ 2 / |*|< \ 2 / |
||-------------- otherwise | ||-------------- otherwise |
|| 2/15*x\ | || 2/15*x\ |
||1 + tan |----| | ||1 + tan |----| |
\\ \ 2 / / \\ \ 2 / /
$$2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{15 x}{2} \right)}}{\tan^{2}{\left(\frac{15 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{15 x}{2} \right)}}{\tan^{2}{\left(\frac{15 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)$$
// 1 for And(im(x) = 0, 15*x mod 2*pi = 0)\
// 0 for And(im(x) = 0, 15*x mod pi = 0)\ || |
2*|< |*|< /pi \ |
\\sin(15*x) otherwise / ||sin|-- + 15*x| otherwise |
\\ \2 / /
$$2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\sin{\left(15 x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\sin{\left(15 x + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)$$
/ pi\
2*cos(15*x)*cos|15*x - --|
\ 2 /
$$2 \cos{\left(15 x \right)} \cos{\left(15 x - \frac{\pi}{2} \right)}$$
2
------------------------
/ pi\
sec(15*x)*sec|15*x - --|
\ 2 /
$$\frac{2}{\sec{\left(15 x \right)} \sec{\left(15 x - \frac{\pi}{2} \right)}}$$
2
-------------------
csc(15*x)*sec(15*x)
$$\frac{2}{\csc{\left(15 x \right)} \sec{\left(15 x \right)}}$$
// 0 for And(im(x) = 0, 15*x mod pi = 0)\ // 1 for And(im(x) = 0, 15*x mod 2*pi = 0)\
|| | || |
||/ 0 for And(im(x) = 0, 15*x mod pi = 0) | ||/ 1 for And(im(x) = 0, 15*x mod 2*pi = 0) |
||| | ||| |
||| /15*x\ | ||| 2/15*x\ |
2*|<| 2*cot|----| |*|<|-1 + cot |----| |
||< \ 2 / otherwise | ||< \ 2 / otherwise |
|||-------------- otherwise | |||--------------- otherwise |
||| 2/15*x\ | ||| 2/15*x\ |
|||1 + cot |----| | ||| 1 + cot |----| |
\\\ \ 2 / / \\\ \ 2 / /
$$2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{15 x}{2} \right)}}{\cot^{2}{\left(\frac{15 x}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{15 x}{2} \right)} - 1}{\cot^{2}{\left(\frac{15 x}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)$$
$$\frac{1}{\csc{\left(30 x \right)}}$$
/ 2/15*x\\ /15*x\
4*|1 - tan |----||*tan|----|
\ \ 2 // \ 2 /
----------------------------
2
/ 2/15*x\\
|1 + tan |----||
\ \ 2 //
$$\frac{4 \cdot \left(1 - \tan^{2}{\left(\frac{15 x}{2} \right)}\right) \tan{\left(\frac{15 x}{2} \right)}}{\left(\tan^{2}{\left(\frac{15 x}{2} \right)} + 1\right)^{2}}$$
// 0 for And(im(x) = 0, 15*x mod pi = 0)\ // 1 for And(im(x) = 0, 15*x mod 2*pi = 0)\
2*|< |*|< |
\\sin(15*x) otherwise / \\cos(15*x) otherwise /
$$2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\sin{\left(15 x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\cos{\left(15 x \right)} & \text{otherwise} \end{cases}\right)$$
1
--------------
/ pi\
sec|30*x - --|
\ 2 /
$$\frac{1}{\sec{\left(30 x - \frac{\pi}{2} \right)}}$$
/pi \
2*sin(15*x)*sin|-- + 15*x|
\2 /
$$2 \sin{\left(15 x \right)} \sin{\left(15 x + \frac{\pi}{2} \right)}$$
$$\sin{\left(30 x \right)}$$
2
------------------------
/pi \
csc(15*x)*csc|-- - 15*x|
\2 /
$$\frac{2}{\csc{\left(15 x \right)} \csc{\left(- 15 x + \frac{\pi}{2} \right)}}$$
/ 0 for And(im(x) = 0, 30*x mod pi = 0)
<
\sin(30*x) otherwise
$$\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 30 x \bmod \pi = 0 \\\sin{\left(30 x \right)} & \text{otherwise} \end{cases}$$
2*tan(15*x)
--------------
2
1 + tan (15*x)
$$\frac{2 \tan{\left(15 x \right)}}{\tan^{2}{\left(15 x \right)} + 1}$$
// 1 for And(im(x) = 0, 15*x mod 2*pi = 0)\
// 0 for And(im(x) = 0, 15*x mod pi = 0)\ || |
|| | || 1 |
2*|< 1 |*|<-------------- otherwise |
||--------- otherwise | || /pi \ |
\\csc(15*x) / ||csc|-- - 15*x| |
\\ \2 / /
$$2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\frac{1}{\csc{\left(15 x \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- 15 x + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)$$
/ 0 for And(im(x) = 0, 30*x mod pi = 0)
|
| 2*cot(15*x)
<-------------- otherwise
| 2
|1 + cot (15*x)
\
$$\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 30 x \bmod \pi = 0 \\\frac{2 \cot{\left(15 x \right)}}{\cot^{2}{\left(15 x \right)} + 1} & \text{otherwise} \end{cases}$$
// 0 for And(im(x) = 0, 15*x mod pi = 0)\ // 1 for And(im(x) = 0, 15*x mod 2*pi = 0)\
|| | || |
|| /15*x\ | || 2/15*x\ |
|| 2*cot|----| | ||-1 + cot |----| |
2*|< \ 2 / |*|< \ 2 / |
||-------------- otherwise | ||--------------- otherwise |
|| 2/15*x\ | || 2/15*x\ |
||1 + cot |----| | || 1 + cot |----| |
\\ \ 2 / / \\ \ 2 / /
$$2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{15 x}{2} \right)}}{\cot^{2}{\left(\frac{15 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{15 x}{2} \right)} - 1}{\cot^{2}{\left(\frac{15 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)$$
/ pi\
cos|30*x - --|
\ 2 /
$$\cos{\left(30 x - \frac{\pi}{2} \right)}$$
// 0 for And(im(x) = 0, 15*x mod pi = 0)\ // 1 for And(im(x) = 0, 15*x mod 2*pi = 0)\
|| | || |
2*| 0 for And(im(x) = 0, 15*x mod pi = 0) |*| 1 for And(im(x) = 0, 15*x mod 2*pi = 0) |
||< otherwise | ||< otherwise |
\\\sin(15*x) otherwise / \\\cos(15*x) otherwise /
$$2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\sin{\left(15 x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\cos{\left(15 x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)$$
// 0 for And(im(x) = 0, 15*x mod pi = 0)\
|| | // 1 for And(im(x) = 0, 15*x mod 2*pi = 0)\
|| 1 | || |
2*|<-------------- otherwise |*|< 1 |
|| / pi\ | ||--------- otherwise |
||sec|15*x - --| | \\sec(15*x) /
\\ \ 2 / /
$$2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\frac{1}{\sec{\left(15 x - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(15 x \right)}} & \text{otherwise} \end{cases}\right)$$
// 0 for And(im(x) = 0, 15*x mod pi = 0)\
|| | // 1 for And(im(x) = 0, 15*x mod 2*pi = 0)\
2*|< / pi\ |*|< |
||cos|15*x - --| otherwise | \\cos(15*x) otherwise /
\\ \ 2 / /
$$2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod \pi = 0 \\\cos{\left(15 x - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 15 x \bmod 2 \pi = 0 \\\cos{\left(15 x \right)} & \text{otherwise} \end{cases}\right)$$