Подстановка условия
[src](2*x^2)*y - x*y^2 + x2*y - 3*x*y^2 + (2*x)*y при y = -4
(2*x^2)*y - x*y^2 + x2*y - 3*x*y^2 + (2*x)*y
$$2 x y + - 3 x y^{2} + x_{2} y + - x y^{2} + 2 x^{2} y$$
(2*x^2)*(-4) - x*(-4)^2 + x2*(-4) - 3*x*(-4)^2 + (2*x)*(-4)
$$(-4) 2 x + - 3 (-4)^{2} x + (-4) x_{2} + - (-4)^{2} x + (-4) 2 x^{2}$$
(2*x^2)*(-4) - x*(-4)^2 + x2*(-4) - 3*x*(-4)^2 + (2*x)*(-4)
$$-4 \cdot 2 x + - 48 x + -4 x_{2} + - 16 x + -4 \cdot 2 x^{2}$$
$$- 8 x^{2} - 72 x - 4 x_{2}$$
2 2
x2*y - 4*x*y + 2*x*y + 2*y*x
$$2 x^{2} y - 4 x y^{2} + 2 x y + x_{2} y$$
x2*y + 2.0*x*y + 2.0*y*x^2 - 4.0*x*y^2
Рациональный знаменатель
[src] 2 2
x2*y - 4*x*y + 2*x*y + 2*y*x
$$2 x^{2} y - 4 x y^{2} + 2 x y + x_{2} y$$
Объединение рациональных выражений
[src]y*(x2 + 2*x + x*(-y + 2*x) - 3*x*y)
$$y \left(- 3 x y + x \left(2 x - y\right) + 2 x + x_{2}\right)$$
/ 2 \
y*\x2 + 2*x + 2*x - 4*x*y/
$$y \left(2 x^{2} - 4 x y + 2 x + x_{2}\right)$$
2 2 2
x2*y + 2*x *y - x*y - 3*x*y + 2*x*y
$$- x y^{2} + 2 x y - 3 x y^{2} + 2 x^{2} y + x_{2} y$$
2 2 2
x2*y + 2*x*y + 2*x *y - x*y - 3*x*y
$$- x y^{2} + 2 x y - 3 x y^{2} + 2 x^{2} y + x_{2} y$$
2 2
x2*y - 4*x*y + 2*x*y + 2*y*x
$$2 x^{2} y - 4 x y^{2} + 2 x y + x_{2} y$$
/ 2 \
y*\x2 + 2*x + 2*x - 4*x*y/
$$y \left(2 x^{2} - 4 x y + 2 x + x_{2}\right)$$