Тригонометрическая часть
[src]$$- \cos{\left(3 t \right)}$$
/ 1 for And(im(t) = 0, (pi + 3*t) mod 2*pi = 0)
<
\-cos(3*t) otherwise
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(3 t + \pi\right) \bmod 2 \pi = 0 \\- \cos{\left(3 t \right)} & \text{otherwise} \end{cases}$$
/pi \
-sin|-- + 3*t|
\2 /
$$- \sin{\left(3 t + \frac{\pi}{2} \right)}$$
/ 1 for And(im(t) = 0, (pi + 3*t) mod 2*pi = 0)
|
| -1
<------------- otherwise
| /pi \
|csc|-- - 3*t|
\ \2 /
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(3 t + \pi\right) \bmod 2 \pi = 0 \\- \frac{1}{\csc{\left(- 3 t + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}$$
1
1 - ---------
2/3*t\
tan |---|
\ 2 /
-------------
1
1 + ---------
2/3*t\
tan |---|
\ 2 /
$$\frac{1 - \frac{1}{\tan^{2}{\left(\frac{3 t}{2} \right)}}}{1 + \frac{1}{\tan^{2}{\left(\frac{3 t}{2} \right)}}}$$
/ 1 for And(im(t) = 0, (pi + 3*t) mod 2*pi = 0)
|
| 1
|-1 + ---------
| 2/3*t\
| cot |---|
< \ 2 /
|-------------- otherwise
| 1
|1 + ---------
| 2/3*t\
| cot |---|
\ \ 2 /
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(3 t + \pi\right) \bmod 2 \pi = 0 \\\frac{-1 + \frac{1}{\cot^{2}{\left(\frac{3 t}{2} \right)}}}{1 + \frac{1}{\cot^{2}{\left(\frac{3 t}{2} \right)}}} & \text{otherwise} \end{cases}$$
// 1 for And(im(t) = 0, 3*t mod 2*pi = 0)\
-|< |
\\cos(3*t) otherwise /
$$- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge 3 t \bmod 2 \pi = 0 \\\cos{\left(3 t \right)} & \text{otherwise} \end{cases}$$
2/3*t\
1 - cot |---|
\ 2 /
-------------
2/3*t\
1 + cot |---|
\ 2 /
$$\frac{1 - \cot^{2}{\left(\frac{3 t}{2} \right)}}{\cot^{2}{\left(\frac{3 t}{2} \right)} + 1}$$
-1
-------------
/pi \
csc|-- - 3*t|
\2 /
$$- \frac{1}{\csc{\left(- 3 t + \frac{\pi}{2} \right)}}$$
/ 1 for And(im(t) = 0, (pi + 3*t) mod 2*pi = 0)
|
< -1
|-------- otherwise
\sec(3*t)
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(3 t + \pi\right) \bmod 2 \pi = 0 \\- \frac{1}{\sec{\left(3 t \right)}} & \text{otherwise} \end{cases}$$
/ 1 for And(im(t) = 0, (pi + 3*t) mod 2*pi = 0)
|
| // 1 for And(im(t) = 0, 3*t mod 2*pi = 0)\
| || |
| || 2/3*t\ |
< ||-1 + cot |---| |
|-|< \ 2 / | otherwise
| ||-------------- otherwise |
| || 2/3*t\ |
| ||1 + cot |---| |
\ \\ \ 2 / /
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(3 t + \pi\right) \bmod 2 \pi = 0 \\- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge 3 t \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{3 t}{2} \right)} - 1}{\cot^{2}{\left(\frac{3 t}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}$$
/ 2/3*t\\
-|1 - tan |---||
\ \ 2 //
-----------------
2/3*t\
1 + tan |---|
\ 2 /
$$- \frac{1 - \tan^{2}{\left(\frac{3 t}{2} \right)}}{\tan^{2}{\left(\frac{3 t}{2} \right)} + 1}$$
/ 3*pi\
sin|3*t + ----|
\ 2 /
$$\sin{\left(3 t + \frac{3 \pi}{2} \right)}$$
// 1 for And(im(t) = 0, 3*t mod 2*pi = 0)\
|| |
|| 2/3*t\ |
||-1 + cot |---| |
-|< \ 2 / |
||-------------- otherwise |
|| 2/3*t\ |
||1 + cot |---| |
\\ \ 2 / /
$$- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge 3 t \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{3 t}{2} \right)} - 1}{\cot^{2}{\left(\frac{3 t}{2} \right)} + 1} & \text{otherwise} \end{cases}$$
/ 1 for And(im(t) = 0, (pi + 3*t) mod 2*pi = 0)
|
| / 2/3*t\\
|-|1 - tan |---||
< \ \ 2 //
|----------------- otherwise
| 2/3*t\
| 1 + tan |---|
\ \ 2 /
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(3 t + \pi\right) \bmod 2 \pi = 0 \\- \frac{1 - \tan^{2}{\left(\frac{3 t}{2} \right)}}{\tan^{2}{\left(\frac{3 t}{2} \right)} + 1} & \text{otherwise} \end{cases}$$
/ 1 for And(im(t) = 0, (pi + 3*t) mod 2*pi = 0)
|
< /pi \
|-sin|-- + 3*t| otherwise
\ \2 /
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(3 t + \pi\right) \bmod 2 \pi = 0 \\- \sin{\left(3 t + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}$$
$$- \frac{1}{\sec{\left(3 t \right)}}$$
/ 1 for And(im(t) = 0, (pi + 3*t) mod 2*pi = 0)
|
| 2/3*t\
|-1 + tan |---|
< \ 2 /
|-------------- otherwise
| 2/3*t\
|1 + tan |---|
\ \ 2 /
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(3 t + \pi\right) \bmod 2 \pi = 0 \\\frac{\tan^{2}{\left(\frac{3 t}{2} \right)} - 1}{\tan^{2}{\left(\frac{3 t}{2} \right)} + 1} & \text{otherwise} \end{cases}$$
/ 1 for And(im(t) = 0, (pi + 3*t) mod 2*pi = 0)
|
< // 1 for And(im(t) = 0, 3*t mod 2*pi = 0)\
|-|< | otherwise
\ \\cos(3*t) otherwise /
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(3 t + \pi\right) \bmod 2 \pi = 0 \\- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge 3 t \bmod 2 \pi = 0 \\\cos{\left(3 t \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}$$