Тригонометрическая часть
[src] // / / pi\ \\
|| 0 for And|im(a) = 0, |2*a + --| mod pi = 0||
|| \ \ 4 / /|
|| |
___ || / pi\ |
-5 + \/ 2 *|< 2*cot|a + --| |
|| \ 8 / |
||---------------- otherwise |
|| 2/ pi\ |
||1 + cot |a + --| |
\\ \ 8 / /
$$\left(\sqrt{2} \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(2 a + \frac{\pi}{4}\right) \bmod \pi = 0 \\\frac{2 \cot{\left(a + \frac{\pi}{8} \right)}}{\cot^{2}{\left(a + \frac{\pi}{8} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) - 5$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
|| | || |
||/ 0 for And(im(a) = 0, 2*a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod pi = 0) |
||| | ||| |
-5 + |<| 2*cot(a) | + |<| 2 |
||<----------- otherwise otherwise | ||<-1 + cot (a) otherwise |
||| 2 | |||------------ otherwise |
|||1 + cot (a) | ||| 2 |
\\\ / \\\1 + cot (a) /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) - 5$$
/pi \
-5 + sin(2*a) + sin|-- + 2*a|
\2 /
$$\sin{\left(2 a \right)} + \sin{\left(2 a + \frac{\pi}{2} \right)} - 5$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
-5 + |< | + |< |
\\sin(2*a) otherwise / \\cos(2*a) otherwise /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right) - 5$$
/ pi\
-5 + cos(2*a) + cos|2*a - --|
\ 2 /
$$\cos{\left(2 a \right)} + \cos{\left(2 a - \frac{\pi}{2} \right)} - 5$$
// 1 for And(im(a) = 0, a mod pi = 0)\
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ || |
-5 + |< | + |< /pi \ |
\\sin(2*a) otherwise / ||sin|-- + 2*a| otherwise |
\\ \2 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(2 a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) - 5$$
2
1 - tan (a) 2*tan(a)
-5 + ----------- + -----------
2 2
1 + tan (a) 1 + tan (a)
$$\frac{1 - \tan^{2}{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} - 5 + \frac{2 \tan{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1}$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
|| | || |
|| 2*tan(a) | || 2 |
-5 + |<----------- otherwise | + |<1 - tan (a) |
|| 2 | ||----------- otherwise |
||1 + tan (a) | || 2 |
\\ / \\1 + tan (a) /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \tan{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1 - \tan^{2}{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) - 5$$
___ / pi\
2*\/ 2 *tan|a + --|
\ 8 /
-5 + -------------------
2/ pi\
1 + tan |a + --|
\ 8 /
$$-5 + \frac{2 \sqrt{2} \tan{\left(a + \frac{\pi}{8} \right)}}{\tan^{2}{\left(a + \frac{\pi}{8} \right)} + 1}$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
|| | || |
|| 2*cot(a) | || 2 |
-5 + |<----------- otherwise | + |<-1 + cot (a) |
|| 2 | ||------------ otherwise |
||1 + cot (a) | || 2 |
\\ / \\1 + cot (a) /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) - 5$$
1 1
-5 + -------- + -------------
sec(2*a) / pi\
sec|2*a - --|
\ 2 /
$$-5 + \frac{1}{\sec{\left(2 a - \frac{\pi}{2} \right)}} + \frac{1}{\sec{\left(2 a \right)}}$$
___
\/ 2
-5 + -------------
/ pi\
csc|2*a + --|
\ 4 /
$$-5 + \frac{\sqrt{2}}{\csc{\left(2 a + \frac{\pi}{4} \right)}}$$
// 1 for And(im(a) = 0, a mod pi = 0)\
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ || |
|| | || 1 |
-5 + |< 1 | + |<------------- otherwise |
||-------- otherwise | || /pi \ |
\\csc(2*a) / ||csc|-- - 2*a| |
\\ \2 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{1}{\csc{\left(2 a \right)}} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(- 2 a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) - 5$$
___
\/ 2
-5 + -------------
/ pi\
sec|2*a - --|
\ 4 /
$$-5 + \frac{\sqrt{2}}{\sec{\left(2 a - \frac{\pi}{4} \right)}}$$
___ / pi\
-5 + \/ 2 *sin|2*a + --|
\ 4 /
$$\sqrt{2} \sin{\left(2 a + \frac{\pi}{4} \right)} - 5$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod pi = 0)\
|| 1 | || |
-5 + |<------------- otherwise | + |< 1 |
|| / pi\ | ||-------- otherwise |
||sec|2*a - --| | \\sec(2*a) /
\\ \ 2 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a \right)}} & \text{otherwise} \end{cases}\right) - 5$$
___ / pi\
-5 + \/ 2 *cos|2*a - --|
\ 4 /
$$\sqrt{2} \cos{\left(2 a - \frac{\pi}{4} \right)} - 5$$
1 1
-5 + -------- + -------------
csc(2*a) /pi \
csc|-- - 2*a|
\2 /
$$-5 + \frac{1}{\csc{\left(- 2 a + \frac{\pi}{2} \right)}} + \frac{1}{\csc{\left(2 a \right)}}$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod pi = 0)\
-5 + |< / pi\ | + |< |
||cos|2*a - --| otherwise | \\cos(2*a) otherwise /
\\ \ 2 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\cos{\left(2 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right) - 5$$
// / / pi\ \\
|| 0 for And|im(a) = 0, |2*a + --| mod pi = 0||
___ || \ \ 4 / /|
-5 + \/ 2 *|< |
|| 2/ pi\ / pi\ |
||2*sin |a + --|*cot|a + --| otherwise |
\\ \ 8 / \ 8 / /
$$\left(\sqrt{2} \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(2 a + \frac{\pi}{4}\right) \bmod \pi = 0 \\2 \sin^{2}{\left(a + \frac{\pi}{8} \right)} \cot{\left(a + \frac{\pi}{8} \right)} & \text{otherwise} \end{cases}\right)\right) - 5$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
|| | || |
-5 + | 0 for And(im(a) = 0, 2*a mod pi = 0) | + | 1 for And(im(a) = 0, a mod pi = 0) |
||< otherwise | ||< otherwise |
\\\sin(2*a) otherwise / \\\cos(2*a) otherwise /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) - 5$$
1 1
-5 + -------- + --------
csc(2*a) sec(2*a)
$$-5 + \frac{1}{\sec{\left(2 a \right)}} + \frac{1}{\csc{\left(2 a \right)}}$$