Тригонометрическая часть
[src]/ 2 \ / 2/3*a\\ /3*a\
\1 - tan (a)/*|1 - tan |---|| 4*tan(a)*tan|---|
\ \ 2 // \ 2 /
----------------------------- - -----------------------------
/ 2 \ / 2/3*a\\ / 2 \ / 2/3*a\\
\1 + tan (a)/*|1 + tan |---|| \1 + tan (a)/*|1 + tan |---||
\ \ 2 // \ \ 2 //
$$\frac{\left(1 - \tan^{2}{\left(a \right)}\right) \left(1 - \tan^{2}{\left(\frac{3 a}{2} \right)}\right)}{\left(\tan^{2}{\left(a \right)} + 1\right) \left(\tan^{2}{\left(\frac{3 a}{2} \right)} + 1\right)} - \frac{4 \tan{\left(a \right)} \tan{\left(\frac{3 a}{2} \right)}}{\left(\tan^{2}{\left(a \right)} + 1\right) \left(\tan^{2}{\left(\frac{3 a}{2} \right)} + 1\right)}$$
2/5*a\
1 - tan |---|
\ 2 /
-------------
2/5*a\
1 + tan |---|
\ 2 /
$$\frac{1 - \tan^{2}{\left(\frac{5 a}{2} \right)}}{\tan^{2}{\left(\frac{5 a}{2} \right)} + 1}$$
// 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
// 1 for And(im(a) = 0, a mod pi = 0)\ || | // 0 for And(im(a) = 0, 2*a mod pi = 0)\ || |
|| | || 2/3*a\ | || | || /3*a\ |
|| 2 | ||1 - tan |---| | || 2*tan(a) | || 2*tan|---| |
|<1 - tan (a) |*|< \ 2 / | - |<----------- otherwise |*|< \ 2 / |
||----------- otherwise | ||------------- otherwise | || 2 | ||------------- otherwise |
|| 2 | || 2/3*a\ | ||1 + tan (a) | || 2/3*a\ |
\\1 + tan (a) / ||1 + tan |---| | \\ / ||1 + tan |---| |
\\ \ 2 / / \\ \ 2 / /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \tan{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{3 a}{2} \right)}}{\tan^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1 - \tan^{2}{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{3 a}{2} \right)}}{\tan^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)$$
// 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
// 1 for And(im(a) = 0, a mod pi = 0)\ || | // 0 for And(im(a) = 0, 2*a mod pi = 0)\ || |
|| | ||/ 1 for And(im(a) = 0, 3*a mod 2*pi = 0) | || | ||/ 0 for And(im(a) = 0, 3*a mod pi = 0) |
||/ 1 for And(im(a) = 0, a mod pi = 0) | ||| | ||/ 0 for And(im(a) = 0, 2*a mod pi = 0) | ||| |
||| | ||| 2/3*a\ | ||| | ||| /3*a\ |
|<| 2 |*|<|-1 + cot |---| | - |<| 2*cot(a) |*|<| 2*cot|---| |
||<-1 + cot (a) otherwise | ||< \ 2 / otherwise | ||<----------- otherwise otherwise | ||< \ 2 / otherwise |
|||------------ otherwise | |||-------------- otherwise | ||| 2 | |||------------- otherwise |
||| 2 | ||| 2/3*a\ | |||1 + cot (a) | ||| 2/3*a\ |
\\\1 + cot (a) / |||1 + cot |---| | \\\ / |||1 + cot |---| |
\\\ \ 2 / / \\\ \ 2 / /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 a}{2} \right)}}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{3 a}{2} \right)} - 1}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)$$
1
-------------
/pi \
csc|-- - 5*a|
\2 /
$$\frac{1}{\csc{\left(- 5 a + \frac{\pi}{2} \right)}}$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
// 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ || | || |
|< |*|< | - |< / pi\ |*|< / pi\ |
\\cos(2*a) otherwise / \\cos(3*a) otherwise / ||cos|2*a - --| otherwise | ||cos|3*a - --| otherwise |
\\ \ 2 / / \\ \ 2 / /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\cos{\left(2 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\cos{\left(3 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\cos{\left(3 a \right)} & \text{otherwise} \end{cases}\right)\right)$$
$$\frac{1}{\sec{\left(5 a \right)}}$$
// 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
|< |*|< | - |< |*|< |
\\cos(2*a) otherwise / \\cos(3*a) otherwise / \\sin(2*a) otherwise / \\sin(3*a) otherwise /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\sin{\left(3 a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\cos{\left(3 a \right)} & \text{otherwise} \end{cases}\right)\right)$$
/ 1 for And(im(a) = 0, 5*a mod 2*pi = 0)
|
| 2/5*a\
|-1 + cot |---|
< \ 2 /
|-------------- otherwise
| 2/5*a\
|1 + cot |---|
\ \ 2 /
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{5 a}{2} \right)} - 1}{\cot^{2}{\left(\frac{5 a}{2} \right)} + 1} & \text{otherwise} \end{cases}$$
// 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
|| | || | || | || |
| 1 for And(im(a) = 0, a mod pi = 0) |*| 1 for And(im(a) = 0, 3*a mod 2*pi = 0) | - | 0 for And(im(a) = 0, 2*a mod pi = 0) |*| 0 for And(im(a) = 0, 3*a mod pi = 0) |
||< otherwise | ||< otherwise | ||< otherwise | ||< otherwise |
\\\cos(2*a) otherwise / \\\cos(3*a) otherwise / \\\sin(2*a) otherwise / \\\sin(3*a) otherwise /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\sin{\left(3 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\cos{\left(3 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)$$
// 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\
|| | || | // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
|| 1 | || 1 | || | || |
|<------------- otherwise |*|<------------- otherwise | - |< 1 |*|< 1 |
|| /pi \ | || /pi \ | ||-------- otherwise | ||-------- otherwise |
||csc|-- - 2*a| | ||csc|-- - 3*a| | \\csc(2*a) / \\csc(3*a) /
\\ \2 / / \\ \2 / /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{1}{\csc{\left(2 a \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{1}{\csc{\left(3 a \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(- 2 a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- 3 a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right)$$
1 1
----------------- - -----------------
sec(2*a)*sec(3*a) csc(2*a)*csc(3*a)
$$\frac{1}{\sec{\left(2 a \right)} \sec{\left(3 a \right)}} - \frac{1}{\csc{\left(2 a \right)} \csc{\left(3 a \right)}}$$
$$\cos{\left(5 a \right)}$$
/ 1 for And(im(a) = 0, 5*a mod 2*pi = 0)
<
\cos(5*a) otherwise
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\cos{\left(5 a \right)} & \text{otherwise} \end{cases}$$
1 1
--------------------------- - -----------------
/pi \ /pi \ csc(2*a)*csc(3*a)
csc|-- - 3*a|*csc|-- - 2*a|
\2 / \2 /
$$\frac{1}{\csc{\left(- 3 a + \frac{\pi}{2} \right)} \csc{\left(- 2 a + \frac{\pi}{2} \right)}} - \frac{1}{\csc{\left(2 a \right)} \csc{\left(3 a \right)}}$$
// 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\
|| | || | // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
|< /pi \ |*|< /pi \ | - |< |*|< |
||sin|-- + 2*a| otherwise | ||sin|-- + 3*a| otherwise | \\sin(2*a) otherwise / \\sin(3*a) otherwise /
\\ \2 / / \\ \2 / /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\sin{\left(3 a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(2 a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\sin{\left(3 a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right)$$
/pi \ /pi \
sin|-- + 2*a|*sin|-- + 3*a| - sin(2*a)*sin(3*a)
\2 / \2 /
$$- \sin{\left(2 a \right)} \sin{\left(3 a \right)} + \sin{\left(2 a + \frac{\pi}{2} \right)} \sin{\left(3 a + \frac{\pi}{2} \right)}$$
/ pi\ / pi\
cos(2*a)*cos(3*a) - cos|2*a - --|*cos|3*a - --|
\ 2 / \ 2 /
$$\cos{\left(2 a \right)} \cos{\left(3 a \right)} - \cos{\left(2 a - \frac{\pi}{2} \right)} \cos{\left(3 a - \frac{\pi}{2} \right)}$$
// 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
// 1 for And(im(a) = 0, a mod pi = 0)\ || | // 0 for And(im(a) = 0, 2*a mod pi = 0)\ || |
|| | || 2/3*a\ | || | || /3*a\ |
|| 2 | ||-1 + cot |---| | || 2*cot(a) | || 2*cot|---| |
|<-1 + cot (a) |*|< \ 2 / | - |<----------- otherwise |*|< \ 2 / |
||------------ otherwise | ||-------------- otherwise | || 2 | ||------------- otherwise |
|| 2 | || 2/3*a\ | ||1 + cot (a) | || 2/3*a\ |
\\1 + cot (a) / ||1 + cot |---| | \\ / ||1 + cot |---| |
\\ \ 2 / / \\ \ 2 / /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 a}{2} \right)}}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{3 a}{2} \right)} - 1}{\cot^{2}{\left(\frac{3 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)$$
$$\sin{\left(5 a + \frac{\pi}{2} \right)}$$
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 3*a mod pi = 0)\
// 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, 3*a mod 2*pi = 0)\ || | || |
|| | || | || 1 | || 1 |
|< 1 |*|< 1 | - |<------------- otherwise |*|<------------- otherwise |
||-------- otherwise | ||-------- otherwise | || / pi\ | || / pi\ |
\\sec(2*a) / \\sec(3*a) / ||sec|2*a - --| | ||sec|3*a - --| |
\\ \ 2 / / \\ \ 2 / /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod \pi = 0 \\\frac{1}{\sec{\left(3 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 3 a \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(3 a \right)}} & \text{otherwise} \end{cases}\right)\right)$$
1 1
----------------- - ---------------------------
sec(2*a)*sec(3*a) / pi\ / pi\
sec|2*a - --|*sec|3*a - --|
\ 2 / \ 2 /
$$- \frac{1}{\sec{\left(2 a - \frac{\pi}{2} \right)} \sec{\left(3 a - \frac{\pi}{2} \right)}} + \frac{1}{\sec{\left(2 a \right)} \sec{\left(3 a \right)}}$$