Тригонометрическая часть
[src] // 0 for And(im(t) = 0, t mod pi = 0)\ // 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| | || |
2/ pi\ || 1 | || 1 |
- sec |t - --|*|<------------ otherwise | + |<------- otherwise |
\ 2 / || 2/ pi\ | || 2 |
||sec |t - --| | ||sec (t) |
\\ \ 2 / / \\ /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{1}{\sec^{2}{\left(t - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \sec^{2}{\left(t - \frac{\pi}{2} \right)}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{1}{\sec^{2}{\left(t \right)}} & \text{otherwise} \end{cases}\right)$$
$$- \frac{1}{\csc^{2}{\left(t \right)}}$$
// 0 for And(im(t) = 0, t mod pi = 0)\ // zoo for And(im(t) = 0, t mod pi = 0)\ // 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| | || | || |
||/ 0 for And(im(t) = 0, t mod pi = 0) | || 1 | ||/ 1 for And(im(t) = 0, t mod 2*pi = 0) |
- |<| |*|<------- otherwise | + |<| |
||< 2 otherwise | || 2 | ||< 2 otherwise |
|||sin (t) otherwise | ||sin (t) | |||cos (t) otherwise |
\\\ / \\ / \\\ /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\sin^{2}{\left(t \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} \tilde{\infty} & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{1}{\sin^{2}{\left(t \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\cos^{2}{\left(t \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)$$
/ 2 \
2/ pi\ 2 | sin (2*t)|
sin |t + --| - sin (t)*|1 + ---------|
\ 2 / | 4 |
\ 4*sin (t)/
$$- \left(1 + \frac{\sin^{2}{\left(2 t \right)}}{4 \sin^{4}{\left(t \right)}}\right) \sin^{2}{\left(t \right)} + \sin^{2}{\left(t + \frac{\pi}{2} \right)}$$
2
csc (t)
1 + -------
2
1 sec (t)
------- - -----------
2 2
sec (t) csc (t)
$$- \frac{\frac{\csc^{2}{\left(t \right)}}{\sec^{2}{\left(t \right)}} + 1}{\csc^{2}{\left(t \right)}} + \frac{1}{\sec^{2}{\left(t \right)}}$$
2/ pi\
sec |t - --|
\ 2 /
1 + ------------
2
1 sec (t)
------- - ----------------
2 2/ pi\
sec (t) sec |t - --|
\ 2 /
$$- \frac{1 + \frac{\sec^{2}{\left(t - \frac{\pi}{2} \right)}}{\sec^{2}{\left(t \right)}}}{\sec^{2}{\left(t - \frac{\pi}{2} \right)}} + \frac{1}{\sec^{2}{\left(t \right)}}$$
// 0 for And(im(t) = 0, t mod pi = 0)\
|| |
|| 2/t\ |
|| 4*cot |-| |
|| \2/ |
-|<-------------- otherwise |
|| 2 |
||/ 2/t\\ |
|||1 + cot |-|| |
||\ \2// |
\\ /
$$- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{t}{2} \right)}}{\left(\cot^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}$$
/ 2 \
2 2 | sin (2*t)|
cos (t) - sin (t)*|1 + ---------|
| 4 |
\ 4*sin (t)/
$$- \left(1 + \frac{\sin^{2}{\left(2 t \right)}}{4 \sin^{4}{\left(t \right)}}\right) \sin^{2}{\left(t \right)} + \cos^{2}{\left(t \right)}$$
// 0 for And(im(t) = 0, t mod pi = 0)\ // 1 for And(im(t) = 0, t mod 2*pi = 0)\
2 || | || |
- csc (t)*|< 2 | + |< 2 |
||sin (t) otherwise | ||cos (t) otherwise |
\\ / \\ /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\sin^{2}{\left(t \right)} & \text{otherwise} \end{cases}\right) \csc^{2}{\left(t \right)}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\cos^{2}{\left(t \right)} & \text{otherwise} \end{cases}\right)$$
$$- \sin^{2}{\left(t \right)}$$
/ 0 for And(im(t) = 0, t mod pi = 0)
|
< 2/ pi\
|cos |t - --| otherwise // 1 for And(im(t) = 0, t mod 2*pi = 0)\
\ \ 2 / || |
- ----------------------------------------------- + |< 2 |
2/ pi\ ||cos (t) otherwise |
cos |t - --| \\ /
\ 2 /
$$\left(- \frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\cos^{2}{\left(t - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}}{\cos^{2}{\left(t - \frac{\pi}{2} \right)}}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\cos^{2}{\left(t \right)} & \text{otherwise} \end{cases}\right)$$
/ 0 for And(im(t) = 0, t mod pi = 0)
|
< 2
|sin (t) otherwise // 1 for And(im(t) = 0, t mod 2*pi = 0)\
\ || |
- ------------------------------------------ + |< 2 |
2 ||1 - sin (t) otherwise |
sin (t) \\ /
$$\left(- \frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\sin^{2}{\left(t \right)} & \text{otherwise} \end{cases}}{\sin^{2}{\left(t \right)}}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\1 - \sin^{2}{\left(t \right)} & \text{otherwise} \end{cases}\right)$$
2
csc (t)
1 + ------------
2/pi \
csc |-- - t|
1 \2 /
------------ - ----------------
2/pi \ 2
csc |-- - t| csc (t)
\2 /
$$- \frac{\frac{\csc^{2}{\left(t \right)}}{\csc^{2}{\left(- t + \frac{\pi}{2} \right)}} + 1}{\csc^{2}{\left(t \right)}} + \frac{1}{\csc^{2}{\left(- t + \frac{\pi}{2} \right)}}$$
// 0 for And(im(t) = 0, t mod pi = 0)\ // 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| | || |
|| 2/t\ | || 2 |
|| 4*cot |-| | ||/ 2/t\\ |
/ 2 \ || \2/ | |||-1 + cot |-|| |
- \1 + cot (t)/*|<-------------- otherwise | + |<\ \2// |
|| 2 | ||--------------- otherwise |
||/ 2/t\\ | || 2 |
|||1 + cot |-|| | || / 2/t\\ |
||\ \2// | || |1 + cot |-|| |
\\ / \\ \ \2// /
$$\left(- \left(\cot^{2}{\left(t \right)} + 1\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{t}{2} \right)}}{\left(\cot^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{t}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)$$
2/ pi\
-cos |t - --|
\ 2 /
$$- \cos^{2}{\left(t - \frac{\pi}{2} \right)}$$
2 2/t\ / 1 \
/ 2/t\\ 4*tan |-|*|1 + -------|
|1 - tan |-|| \2/ | 2 |
\ \2// \ tan (t)/
-------------- - -----------------------
2 2
/ 2/t\\ / 2/t\\
|1 + tan |-|| |1 + tan |-||
\ \2// \ \2//
$$\frac{\left(1 - \tan^{2}{\left(\frac{t}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}} - \frac{4 \cdot \left(1 + \frac{1}{\tan^{2}{\left(t \right)}}\right) \tan^{2}{\left(\frac{t}{2} \right)}}{\left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}}$$
/ 0 for And(im(t) = 0, t mod pi = 0)
|
< 2
|sin (t) otherwise // 1 for And(im(t) = 0, t mod 2*pi = 0)\
\ || |
- ------------------------------------------ + |< 2/ pi\ |
2 ||sin |t + --| otherwise |
sin (t) \\ \ 2 / /
$$\left(- \frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\sin^{2}{\left(t \right)} & \text{otherwise} \end{cases}}{\sin^{2}{\left(t \right)}}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\sin^{2}{\left(t + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)$$
// 0 for And(im(t) = 0, t mod pi = 0)\ // 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| | // zoo for And(im(t) = 0, t mod pi = 0)\ || |
||/ 0 for And(im(t) = 0, t mod pi = 0) | || | ||/ 1 for And(im(t) = 0, t mod 2*pi = 0) |
||| | || 2 | ||| |
||| 2/t\ | ||/ 2/t\\ | ||| 2 |
||| 4*cot |-| | |||1 + cot |-|| | |||/ 2/t\\ |
- |<| \2/ |*|<\ \2// | + |<||-1 + cot |-|| |
||<-------------- otherwise otherwise | ||-------------- otherwise | ||<\ \2// otherwise |
||| 2 | || 2/t\ | |||--------------- otherwise |
|||/ 2/t\\ | || 4*cot |-| | ||| 2 |
||||1 + cot |-|| | || \2/ | ||| / 2/t\\ |
|||\ \2// | \\ / ||| |1 + cot |-|| |
\\\ / \\\ \ \2// /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{t}{2} \right)}}{\left(\cot^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} \tilde{\infty} & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}}{4 \cot^{2}{\left(\frac{t}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{t}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)$$
/ 0 for And(im(t) = 0, t mod pi = 0)
|
< 2
|sin (t) otherwise // 1 for And(im(t) = 0, t mod 2*pi = 0)\
\ || |
- ------------------------------------------ + |< 2 |
2 ||cos (t) otherwise |
sin (t) \\ /
$$\left(- \frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\sin^{2}{\left(t \right)} & \text{otherwise} \end{cases}}{\sin^{2}{\left(t \right)}}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\cos^{2}{\left(t \right)} & \text{otherwise} \end{cases}\right)$$
1 cos(2*t)
- - + --------
2 2
$$\frac{\cos{\left(2 t \right)}}{2} - \frac{1}{2}$$
/ 2 \
2 2 | cos (t)|
cos (t) - sin (t)*|1 + -------|
| 2 |
\ sin (t)/
$$- \left(1 + \frac{\cos^{2}{\left(t \right)}}{\sin^{2}{\left(t \right)}}\right) \sin^{2}{\left(t \right)} + \cos^{2}{\left(t \right)}$$
// 0 for And(im(t) = 0, t mod pi = 0)\
|| |
|| 2/t\ |
2 || 4*tan |-| |
/ 2/t\\ || \2/ |
|1 + tan |-|| *|<-------------- otherwise |
\ \2// || 2 | // 1 for And(im(t) = 0, t mod 2*pi = 0)\
||/ 2/t\\ | || |
|||1 + tan |-|| | || 2 |
||\ \2// | ||/ 2/t\\ |
\\ / |||1 - tan |-|| |
- ------------------------------------------------------------------ + |<\ \2// |
2/t\ ||-------------- otherwise |
4*tan |-| || 2 |
\2/ ||/ 2/t\\ |
|||1 + tan |-|| |
\\\ \2// /
$$\left(- \frac{\left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2} \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{4 \tan^{2}{\left(\frac{t}{2} \right)}}{\left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)}{4 \tan^{2}{\left(\frac{t}{2} \right)}}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\left(1 - \tan^{2}{\left(\frac{t}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)$$
/ 2 \
2 2/ pi\ | cos (t) |
cos (t) - cos |t - --|*|1 + ------------|
\ 2 / | 2/ pi\|
| cos |t - --||
\ \ 2 //
$$- \left(\frac{\cos^{2}{\left(t \right)}}{\cos^{2}{\left(t - \frac{\pi}{2} \right)}} + 1\right) \cos^{2}{\left(t - \frac{\pi}{2} \right)} + \cos^{2}{\left(t \right)}$$
// 0 for And(im(t) = 0, t mod pi = 0)\ // 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| | || |
2 || 1 | || 1 |
- csc (t)*|<------- otherwise | + |<------------ otherwise |
|| 2 | || 2/pi \ |
||csc (t) | ||csc |-- - t| |
\\ / \\ \2 / /
$$\left(- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{1}{\csc^{2}{\left(t \right)}} & \text{otherwise} \end{cases}\right) \csc^{2}{\left(t \right)}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{1}{\csc^{2}{\left(- t + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)$$
// 0 for And(im(t) = 0, t mod pi = 0)\
|| |
-|< 2 |
||sin (t) otherwise |
\\ /
$$- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\sin^{2}{\left(t \right)} & \text{otherwise} \end{cases}$$
-1
------------
2/ pi\
sec |t - --|
\ 2 /
$$- \frac{1}{\sec^{2}{\left(t - \frac{\pi}{2} \right)}}$$
2/t\
-4*tan |-|
\2/
--------------
2
/ 2/t\\
|1 + tan |-||
\ \2//
$$- \frac{4 \tan^{2}{\left(\frac{t}{2} \right)}}{\left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}}$$