sqrt(a+b+c)*(b+c-a)*(a+c-b)*(a+b-c) если a=-1 (упростите выражение)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
  ___________                                    
\/ a + b + c *(b + c - a)*(a + c - b)*(a + b - c)
$$\left(- a + b + c\right) \sqrt{c + a + b} \left(- b + a + c\right) \left(- c + a + b\right)$$
Подстановка условия [src]
((sqrt(a + b + c)*(b + c - a))*(a + c - b))*(a + b - c) при a = -1
((sqrt(a + b + c)*(b + c - a))*(a + c - b))*(a + b - c)
$$\left(- a + b + c\right) \sqrt{c + a + b} \left(- b + a + c\right) \left(- c + a + b\right)$$
((sqrt((-1) + b + c)*(b + c - (-1)))*((-1) + c - b))*((-1) + b - c)
$$\left(- (-1) + b + c\right) \sqrt{c + (-1) + b} \left(- b + (-1) + c\right) \left(- c + (-1) + b\right)$$
((sqrt(-1 + b + c)*(b + c - (-1)))*(-1 + c - b))*(-1 + b - c)
$$\sqrt{c + b - 1} \left(b + c - -1\right) \left(- b + c - 1\right) \left(- c + b - 1\right)$$
sqrt(-1 + b + c)*(1 + b + c)*(-1 + b - c)*(-1 + c - b)
$$\left(- b + c - 1\right) \left(b - c - 1\right) \sqrt{b + c - 1} \left(b + c + 1\right)$$
Степени [src]
  ___________                                    
\/ a + b + c *(a + b - c)*(a + c - b)*(b + c - a)
$$\left(- a + b + c\right) \left(a - b + c\right) \left(a + b - c\right) \sqrt{a + b + c}$$
Численный ответ [src]
(a + b + c)^0.5*(a + b - c)*(a + c - b)*(b + c - a)
Рациональный знаменатель [src]
  ___________                                    
\/ a + b + c *(a + b - c)*(a + c - b)*(b + c - a)
$$\left(- a + b + c\right) \left(a - b + c\right) \left(a + b - c\right) \sqrt{a + b + c}$$
Объединение рациональных выражений [src]
  ___________                                    
\/ a + b + c *(a + b - c)*(a + c - b)*(b + c - a)
$$\left(- a + b + c\right) \left(a - b + c\right) \left(a + b - c\right) \sqrt{a + b + c}$$
Общее упрощение [src]
  ___________                                    
\/ a + b + c *(a + b - c)*(a + c - b)*(b + c - a)
$$\left(- a + b + c\right) \left(a - b + c\right) \left(a + b - c\right) \sqrt{a + b + c}$$
Собрать выражение [src]
  ___________                                    
\/ a + b + c *(a + b - c)*(a + c - b)*(b + c - a)
$$\left(- a + b + c\right) \left(a - b + c\right) \left(a + b - c\right) \sqrt{a + b + c}$$
Общий знаменатель [src]
   3   ___________    3   ___________    3   ___________      2   ___________      2   ___________      2   ___________      2   ___________      2   ___________      2   ___________             ___________
- a *\/ a + b + c  - b *\/ a + b + c  - c *\/ a + b + c  + a*b *\/ a + b + c  + a*c *\/ a + b + c  + b*a *\/ a + b + c  + b*c *\/ a + b + c  + c*a *\/ a + b + c  + c*b *\/ a + b + c  - 2*a*b*c*\/ a + b + c 
$$- a^{3} \sqrt{a + b + c} + a^{2} b \sqrt{a + b + c} + a^{2} c \sqrt{a + b + c} + a b^{2} \sqrt{a + b + c} - 2 a b c \sqrt{a + b + c} + a c^{2} \sqrt{a + b + c} - b^{3} \sqrt{a + b + c} + b^{2} c \sqrt{a + b + c} + b c^{2} \sqrt{a + b + c} - c^{3} \sqrt{a + b + c}$$
Комбинаторика [src]
   ___________                                    
-\/ a + b + c *(a + b - c)*(a + c - b)*(a - b - c)
$$- \left(a - b - c\right) \left(a - b + c\right) \left(a + b - c\right) \sqrt{a + b + c}$$