Подстановка условия
[src]sqrt((a + 3)^2) + sqrt((a - 1*4)^2) при a = 4
__________ __________
/ 2 / 2
\/ (a + 3) + \/ (a - 4)
$$\sqrt{\left(a + 3\right)^{2}} + \sqrt{\left(a - 4\right)^{2}}$$
___________ __________
/ 2 / 2
\/ (-4 + a) + \/ (3 + a)
$$\sqrt{\left(a - 4\right)^{2}} + \sqrt{\left(a + 3\right)^{2}}$$
_____________ ____________
/ 2 / 2
\/ (-4 + (4)) + \/ (3 + (4))
$$\sqrt{\left((4) - 4\right)^{2}} + \sqrt{\left((4) + 3\right)^{2}}$$
___________ __________
/ 2 / 2
\/ (-4 + 4) + \/ (3 + 4)
$$\sqrt{\left(-4 + 4\right)^{2}} + \sqrt{\left(3 + 4\right)^{2}}$$
___________ __________
/ 2 / 2
\/ (-4 + a) + \/ (3 + a)
$$\sqrt{\left(a - 4\right)^{2}} + \sqrt{\left(a + 3\right)^{2}}$$
4.0*((-1 + 0.25*a)^2)^0.5 + 3.0*((1 + 0.333333333333333*a)^2)^0.5
Рациональный знаменатель
[src] ___________ __________
/ 2 / 2
\/ (-4 + a) + \/ (3 + a)
$$\sqrt{\left(a - 4\right)^{2}} + \sqrt{\left(a + 3\right)^{2}}$$
___________ __________
/ 2 / 2
\/ (-4 + a) + \/ (a + 3)
$$\sqrt{\left(a - 4\right)^{2}} + \sqrt{\left(a + 3\right)^{2}}$$
Объединение рациональных выражений
[src] ___________ __________
/ 2 / 2
\/ (-4 + a) + \/ (3 + a)
$$\sqrt{\left(a - 4\right)^{2}} + \sqrt{\left(a + 3\right)^{2}}$$
___________ __________
/ 2 / 2
\/ (-4 + a) + \/ (3 + a)
$$\sqrt{\left(a - 4\right)^{2}} + \sqrt{\left(a + 3\right)^{2}}$$
___________ __________
/ 2 / 2
\/ (-4 + a) + \/ (3 + a)
$$\sqrt{\left(a - 4\right)^{2}} + \sqrt{\left(a + 3\right)^{2}}$$
______________ _______________
/ 2 / 2
\/ 9 + a + 6*a + \/ 16 + a - 8*a
$$\sqrt{a^{2} - 8 a + 16} + \sqrt{a^{2} + 6 a + 9}$$
______________ _______________
/ 2 / 2
\/ 9 + a + 6*a + \/ 16 + a - 8*a
$$\sqrt{a^{2} - 8 a + 16} + \sqrt{a^{2} + 6 a + 9}$$
Тригонометрическая часть
[src] ___________ __________
/ 2 / 2
\/ (-4 + a) + \/ (3 + a)
$$\sqrt{\left(a - 4\right)^{2}} + \sqrt{\left(a + 3\right)^{2}}$$