Тригонометрическая часть
[src] __________________________________________________________
/ // 1 for And(im(a) = 0, a mod pi = 0)\ _______________________________________________________
/ || | / // 0 for And(im(a) = 0, 2*a mod pi = 0)\
/ || 1 | / || |
/ 2 - 2*|<------------- otherwise | * / 4 - 4*|< 1 |
/ || /pi \ | / ||-------- otherwise |
/ ||csc|-- - 2*a| | \/ \\csc(2*a) /
\/ \\ \2 / /
$$\left(\sqrt{2 - \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(- 2 a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{1}{\csc{\left(2 a \right)}} & \text{otherwise} \end{cases}\right)\right)}\right)$$
__________________________________________________________
/ // 1 for And(im(a) = 0, a mod pi = 0)\ _______________________________________________________
/ || | / // 0 for And(im(a) = 0, 2*a mod pi = 0)\
/ 2 - 2*|< /pi \ | * / 4 - 4*|< |
/ ||sin|-- + 2*a| otherwise | \/ \\sin(2*a) otherwise /
\/ \\ \2 / /
$$\left(\sqrt{2 - \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(2 a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right)\right)}\right)$$
// 0 for And(im(a) = 0, a mod pi = 0)\
__________________________________________________________ || |
/ // 0 for And(im(a) = 0, 2*a mod pi = 0)\ || ________________ |
/ || | || / 2/a\ |
/ || 2*cot(a) | || / cot |-| |
2* / 4 - 4*|<----------- otherwise | *|< / \2/ |
/ || 2 | ||2* / -------------- otherwise |
/ ||1 + cot (a) | || / 2 |
\/ \\ / || / / 2/a\\ |
|| / |1 + cot |-|| |
\\ \/ \ \2// /
$$2 \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\2 \sqrt{\frac{\cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}}} & \text{otherwise} \end{cases}\right)$$
______________ ______________
/ 2 / 4
/ 2 - -------- * / 4 - --------
\/ sec(2*a) \/ csc(2*a)
$$\sqrt{2 - \frac{2}{\sec{\left(2 a \right)}}} \sqrt{4 - \frac{4}{\csc{\left(2 a \right)}}}$$
________________________________________________________ __________________________________________________________
/ // 1 for And(im(a) = 0, a mod pi = 0)\ / // 0 for And(im(a) = 0, 2*a mod pi = 0)\
/ || | / || |
/ || 2 | / || 2*tan(a) |
/ 2 - 2*|<1 - tan (a) | * / 4 - 4*|<----------- otherwise |
/ ||----------- otherwise | / || 2 |
/ || 2 | / ||1 + tan (a) |
\/ \\1 + tan (a) / \/ \\ /
$$\left(\sqrt{2 - \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1 - \tan^{2}{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \tan{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right)\right)}\right)$$
______________ ___________________
/ 2 / 4
/ 2 - -------- * / 4 - -------------
\/ sec(2*a) / / pi\
/ sec|2*a - --|
\/ \ 2 /
$$\sqrt{2 - \frac{2}{\sec{\left(2 a \right)}}} \sqrt{4 - \frac{4}{\sec{\left(2 a - \frac{\pi}{2} \right)}}}$$
________________
/ 2/a\
/ tan |-| _________________
/ \2/ / 8*tan(a)
4* / -------------- * / 4 - -----------
/ 2 / 2
/ / 2/a\\ \/ 1 + tan (a)
/ |1 + tan |-||
\/ \ \2//
$$4 \sqrt{\frac{\tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}}} \sqrt{4 - \frac{8 \tan{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1}}$$
___________________ ______________
/ 2 / 4
/ 2 - ------------- * / 4 - --------
/ /pi \ \/ csc(2*a)
/ csc|-- - 2*a|
\/ \2 /
$$\sqrt{2 - \frac{2}{\csc{\left(- 2 a + \frac{\pi}{2} \right)}}} \sqrt{4 - \frac{4}{\csc{\left(2 a \right)}}}$$
____________________________________________________________________________________________ _______________________________________________________________________________________________
/ // 1 for And(im(a) = 0, a mod pi = 0)\ / // 0 for And(im(a) = 0, 2*a mod pi = 0)\
/ || | / || |
/ ||/ 1 for And(im(a) = 0, a mod pi = 0) | / ||/ 0 for And(im(a) = 0, 2*a mod pi = 0) |
/ ||| | / ||| |
/ 2 - 2*|<| 2 | * / 4 - 4*|<| 2*cot(a) |
/ ||<-1 + cot (a) otherwise | / ||<----------- otherwise otherwise |
/ |||------------ otherwise | / ||| 2 |
/ ||| 2 | / |||1 + cot (a) |
\/ \\\1 + cot (a) / \/ \\\ /
$$\left(\sqrt{2 - \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)}\right)$$
______________ _____________________
/ 2/ pi\ / / pi\
2* / cos |a - --| * / 4 - 4*cos|2*a - --|
\/ \ 2 / \/ \ 2 /
$$2 \sqrt{4 - 4 \cos{\left(2 a - \frac{\pi}{2} \right)}} \sqrt{\cos^{2}{\left(a - \frac{\pi}{2} \right)}}$$
_____________________
/ / 2 \ _________________
/ 2*\1 - tan (a)/ / 8*tan(a)
/ 2 - --------------- * / 4 - -----------
/ 2 / 2
\/ 1 + tan (a) \/ 1 + tan (a)
$$\sqrt{4 - \frac{8 \tan{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1}} \sqrt{- \frac{2 \cdot \left(1 - \tan^{2}{\left(a \right)}\right)}{\tan^{2}{\left(a \right)} + 1} + 2}$$
___ ______________ ________________
\/ 2 *\/ 1 - cos(2*a) *\/ 4 - 4*sin(2*a)
$$\sqrt{2} \sqrt{1 - \cos{\left(2 a \right)}} \sqrt{4 - 4 \sin{\left(2 a \right)}}$$
_________________________________________________________ __________________________________________________________
/ // 1 for And(im(a) = 0, a mod pi = 0)\ / // 0 for And(im(a) = 0, 2*a mod pi = 0)\
/ || | / || |
/ || 2 | / || 2*cot(a) |
/ 2 - 2*|<-1 + cot (a) | * / 4 - 4*|<----------- otherwise |
/ ||------------ otherwise | / || 2 |
/ || 2 | / ||1 + cot (a) |
\/ \\1 + cot (a) / \/ \\ /
$$\left(\sqrt{2 - \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right)\right)}\right)$$
_______________________________________________________ // 0 for And(im(a) = 0, a mod pi = 0)\
/ // 0 for And(im(a) = 0, 2*a mod pi = 0)\ || |
2* / 4 - 4*|< | *|< _________ |
\/ \\sin(2*a) otherwise / || / 2 |
\\\/ sin (a) otherwise /
$$2 \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sqrt{\sin^{2}{\left(a \right)}} & \text{otherwise} \end{cases}\right)$$
_____________________
/ /pi \ ________________
/ 2 - 2*sin|-- + 2*a| *\/ 4 - 4*sin(2*a)
\/ \2 /
$$\sqrt{2 - 2 \sin{\left(2 a + \frac{\pi}{2} \right)}} \sqrt{4 - 4 \sin{\left(2 a \right)}}$$
_____________________
________________ / / pi\
\/ 2 - 2*cos(2*a) * / 4 - 4*cos|2*a - --|
\/ \ 2 /
$$\sqrt{2 - 2 \cos{\left(2 a \right)}} \sqrt{4 - 4 \cos{\left(2 a - \frac{\pi}{2} \right)}}$$
_________
/ 2 ________________
2*\/ sin (a) *\/ 4 - 4*sin(2*a)
$$2 \sqrt{4 - 4 \sin{\left(2 a \right)}} \sqrt{\sin^{2}{\left(a \right)}}$$
________________________________________________________________________________________ ____________________________________________________________________________________________
/ // 1 for And(im(a) = 0, a mod pi = 0)\ / // 0 for And(im(a) = 0, 2*a mod pi = 0)\
/ || | / || |
/ 2 - 2*| 1 for And(im(a) = 0, a mod pi = 0) | * / 4 - 4*| 0 for And(im(a) = 0, 2*a mod pi = 0) |
/ ||< otherwise | / ||< otherwise |
\/ \\\cos(2*a) otherwise / \/ \\\sin(2*a) otherwise /
$$\left(\sqrt{2 - \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)}\right)$$
____________________________________________________________
_____________________________________________________ / // 0 for And(im(a) = 0, 2*a mod pi = 0)\
/ // 1 for And(im(a) = 0, a mod pi = 0)\ / || |
/ || | / || 1 |
/ 2 - 2*|< 1 | * / 4 - 4*|<------------- otherwise |
/ ||-------- otherwise | / || / pi\ |
\/ \\sec(2*a) / / ||sec|2*a - --| |
\/ \\ \ 2 / /
$$\left(\sqrt{2 - \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a \right)}} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right)}\right)$$
_________ ______________
/ 1 / 4
2* / ------- * / 4 - --------
/ 2 \/ csc(2*a)
\/ csc (a)
$$2 \sqrt{4 - \frac{4}{\csc{\left(2 a \right)}}} \sqrt{\frac{1}{\csc^{2}{\left(a \right)}}}$$
_____________________________________________________ _______________________________________________________
/ // 1 for And(im(a) = 0, a mod pi = 0)\ / // 0 for And(im(a) = 0, 2*a mod pi = 0)\
/ 2 - 2*|< | * / 4 - 4*|< |
\/ \\cos(2*a) otherwise / \/ \\sin(2*a) otherwise /
$$\left(\sqrt{2 - \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right)\right)}\right)$$
______________ ___________________
/ 1 / 4
2* / ------------ * / 4 - -------------
/ 2/ pi\ / / pi\
/ sec |a - --| / sec|2*a - --|
\/ \ 2 / \/ \ 2 /
$$2 \sqrt{4 - \frac{4}{\sec{\left(2 a - \frac{\pi}{2} \right)}}} \sqrt{\frac{1}{\sec^{2}{\left(a - \frac{\pi}{2} \right)}}}$$
____________________________________________________________
_____________________________________________________ / // 0 for And(im(a) = 0, 2*a mod pi = 0)\
/ // 1 for And(im(a) = 0, a mod pi = 0)\ / || |
/ 2 - 2*|< | * / 4 - 4*|< / pi\ |
\/ \\cos(2*a) otherwise / / ||cos|2*a - --| otherwise |
\/ \\ \ 2 / /
$$\left(\sqrt{2 - \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right)\right)}\right) \left(\sqrt{4 - \left(4 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\cos{\left(2 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right)}\right)$$