Подстановка условия
[src]sqrt(5)*sqrt((x + 4)^2 - (2*sqrt(5))^2) при x = 3/2
_______________________
/ 2
___ / 2 / ___\
\/ 5 *\/ (x + 4) - \2*\/ 5 /
$$\sqrt{5} \sqrt{\left(x + 4\right)^{2} - \left(2 \sqrt{5}\right)^{2}}$$
___________________
/ 2
\/ -100 + 5*(4 + x)
$$\sqrt{5 \left(x + 4\right)^{2} - 100}$$
_______________________
/ 2
\/ -100 + 5*(4 + (3/2))
$$\sqrt{5 \left((3/2) + 4\right)^{2} - 100}$$
_____________________
/ 2
\/ -100 + 5*(4 + 3/2)
$$\sqrt{-100 + 5 \left(\frac{3}{2} + 4\right)^{2}}$$
___________________
/ 2
\/ -100 + 5*(4 + x)
$$\sqrt{5 \left(x + 4\right)^{2} - 100}$$
________________
___ / 2
\/ 5 *\/ -20 + (4 + x)
$$\sqrt{5} \sqrt{\left(x + 4\right)^{2} - 20}$$
___________________
/ 2
\/ -100 + 5*(x + 4)
$$\sqrt{5 \left(x + 4\right)^{2} - 100}$$
10.0*(-1 + 0.8*(1 + 0.25*x)^2)^0.5
Рациональный знаменатель
[src] _______________
___ / 2
\/ 5 *\/ -4 + x + 8*x
$$\sqrt{5} \sqrt{x^{2} + 8 x - 4}$$
________________
___ / 2
\/ 5 *\/ -20 + (4 + x)
$$\sqrt{5} \sqrt{\left(x + 4\right)^{2} - 20}$$
Объединение рациональных выражений
[src] ________________
___ / 2
\/ 5 *\/ -20 + (4 + x)
$$\sqrt{5} \sqrt{\left(x + 4\right)^{2} - 20}$$
___________________
/ 2
\/ -100 + 5*(4 + x)
$$\sqrt{5 \left(x + 4\right)^{2} - 100}$$
________________
___ / 2
\/ 5 *\/ -20 + (4 + x)
$$\sqrt{5} \sqrt{\left(x + 4\right)^{2} - 20}$$
_______________
___ / 2
\/ 5 *\/ -4 + x + 8*x
$$\sqrt{5} \sqrt{x^{2} + 8 x - 4}$$
Тригонометрическая часть
[src] ________________
___ / 2
\/ 5 *\/ -20 + (4 + x)
$$\sqrt{5} \sqrt{\left(x + 4\right)^{2} - 20}$$
_______________
___ / 2
\/ 5 *\/ -4 + x + 8*x
$$\sqrt{5} \sqrt{x^{2} + 8 x - 4}$$
________________
___ / 2
\/ 5 *\/ -20 + (x + 4)
$$\sqrt{5} \sqrt{\left(x + 4\right)^{2} - 20}$$