Подстановка условия
[src](-4*((4*cos(1 + 4*exp(x)))*exp(x) + sin(1 + 4*exp(x))))*exp(x) при x = -1/3
(-4*((4*cos(1 + 4*exp(x)))*exp(x) + sin(1 + 4*exp(x))))*exp(x)
$$- 4 \left(e^{x} 4 \cos{\left (4 e^{x} + 1 \right )} + \sin{\left (4 e^{x} + 1 \right )}\right) e^{x}$$
(-4*((4*cos(1 + 4*exp((-1/3))))*exp((-1/3)) + sin(1 + 4*exp((-1/3)))))*exp((-1/3))
$$- 4 \left(e^{(-1/3)} 4 \cos{\left (4 e^{(-1/3)} + 1 \right )} + \sin{\left (4 e^{(-1/3)} + 1 \right )}\right) e^{(-1/3)}$$
(-4*((4*cos(1 + 4*exp(-1/3)))*exp(-1/3) + sin(1 + 4*exp(-1/3))))*exp(-1/3)
$$\frac{1}{e^{\frac{1}{3}}} \left(-1 \cdot 4 \left(\frac{4}{e^{\frac{1}{3}}} \cos{\left (1 + \frac{4}{e^{\frac{1}{3}}} \right )} + \sin{\left (1 + \frac{4}{e^{\frac{1}{3}}} \right )}\right)\right)$$
(-4*sin(1 + 4*exp(-1/3)) - 16*cos(1 + 4*exp(-1/3))*exp(-1/3))*exp(-1/3)
$$\frac{1}{e^{\frac{1}{3}}} \left(- 4 \sin{\left (1 + \frac{4}{e^{\frac{1}{3}}} \right )} - \frac{16}{e^{\frac{1}{3}}} \cos{\left (1 + \frac{4}{e^{\frac{1}{3}}} \right )}\right)$$
/ / x\ / x\ x\ x
\- 4*sin\1 + 4*e / - 16*cos\1 + 4*e /*e /*e
$$\left(- 16 e^{x} \cos{\left (4 e^{x} + 1 \right )} - 4 \sin{\left (4 e^{x} + 1 \right )}\right) e^{x}$$
-4.0*(4.0*cos(1 + 4*exp(x))*exp(x) + sin(1 + 4*exp(x)))*exp(x)
Рациональный знаменатель
[src]/ / x\ / x\ x\ x
\- 4*sin\1 + 4*e / - 16*cos\1 + 4*e /*e /*e
$$\left(- 16 e^{x} \cos{\left (4 e^{x} + 1 \right )} - 4 \sin{\left (4 e^{x} + 1 \right )}\right) e^{x}$$
Объединение рациональных выражений
[src]/ / x\ / x\ x\ x
\- 4*sin\1 + 4*e / - 16*cos\1 + 4*e /*e /*e
$$\left(- 16 e^{x} \cos{\left (4 e^{x} + 1 \right )} - 4 \sin{\left (4 e^{x} + 1 \right )}\right) e^{x}$$
/ / x\ x / x\\ x
-4*\4*cos\1 + 4*e /*e + sin\1 + 4*e //*e
$$- 4 \left(4 e^{x} \cos{\left (4 e^{x} + 1 \right )} + \sin{\left (4 e^{x} + 1 \right )}\right) e^{x}$$
/ x\ 2*x x / x\
- 16*cos\1 + 4*e /*e - 4*e *sin\1 + 4*e /
$$- 16 e^{2 x} \cos{\left (4 e^{x} + 1 \right )} - 4 e^{x} \sin{\left (4 e^{x} + 1 \right )}$$
/ / x\ / x\ x\ x
\- 4*sin\1 + 4*e / - 4*4*cos\1 + 4*e /*e /*e
$$\left(- 16 e^{x} \cos{\left (4 e^{x} + 1 \right )} - 4 \sin{\left (4 e^{x} + 1 \right )}\right) e^{x}$$
/ x\ 2*x x / x\
- 16*cos\1 + 4*e /*e - 4*e *sin\1 + 4*e /
$$- 16 e^{2 x} \cos{\left (4 e^{x} + 1 \right )} - 4 e^{x} \sin{\left (4 e^{x} + 1 \right )}$$
/ / x\ x / x\\ x
-4*\4*cos\1 + 4*e /*e + sin\1 + 4*e //*e
$$- 4 \left(4 e^{x} \cos{\left (4 e^{x} + 1 \right )} + \sin{\left (4 e^{x} + 1 \right )}\right) e^{x}$$
Тригонометрическая часть
[src] / / x\ x / x\\ x
-4*\4*cos\1 + 4*e /*e + sin\1 + 4*e //*e
$$- 4 \left(4 e^{x} \cos{\left (4 e^{x} + 1 \right )} + \sin{\left (4 e^{x} + 1 \right )}\right) e^{x}$$
/ / x\ / x\ / / x\ / x\\ x\ x
-4*\cos(1)*sin\4*e / + cos\4*e /*sin(1) + 4*\cos(1)*cos\4*e / - sin(1)*sin\4*e //*e /*e
$$- 4 \left(4 \left(- \sin{\left (1 \right )} \sin{\left (4 e^{x} \right )} + \cos{\left (1 \right )} \cos{\left (4 e^{x} \right )}\right) e^{x} + \sin{\left (4 e^{x} \right )} \cos{\left (1 \right )} + \sin{\left (1 \right )} \cos{\left (4 e^{x} \right )}\right) e^{x}$$