Подстановка условия
[src]1/(n + 1) - 1/(n + 2) при n = 1
1 1
1*----- - 1*-----
n + 1 n + 2
$$- \frac{1}{n + 2} + 1 \cdot \frac{1}{n + 1}$$
1
---------------
(1 + n)*(2 + n)
$$\frac{1}{\left(n + 1\right) \left(n + 2\right)}$$
1
-------------------
(1 + (1))*(2 + (1))
$$\frac{1}{\left((1) + 1\right) \left((1) + 2\right)}$$
1
---------------
(1 + 1)*(2 + 1)
$$\frac{1}{\left(1 + 1\right) \left(1 + 2\right)}$$
1 1
----- - -----
n + 1 n + 2
$$- \frac{1}{n + 2} + \frac{1}{n + 1}$$
1 1
----- - -----
1 + n 2 + n
$$- \frac{1}{n + 2} + \frac{1}{n + 1}$$
1/(1.0 + n) - 1/(2.0 + n)
Рациональный знаменатель
[src] 1
---------------
(1 + n)*(2 + n)
$$\frac{1}{\left(n + 1\right) \left(n + 2\right)}$$
1 1
----- - -----
1 + n 2 + n
$$- \frac{1}{n + 2} + \frac{1}{n + 1}$$
Объединение рациональных выражений
[src] 1
---------------
(1 + n)*(2 + n)
$$\frac{1}{\left(n + 1\right) \left(n + 2\right)}$$
1
---------------
(1 + n)*(2 + n)
$$\frac{1}{\left(n + 1\right) \left(n + 2\right)}$$
1 1
----- - -----
1 + n 2 + n
$$- \frac{1}{n + 2} + \frac{1}{n + 1}$$
1
------------
2
2 + n + 3*n
$$\frac{1}{n^{2} + 3 n + 2}$$
1
---------------
(1 + n)*(2 + n)
$$\frac{1}{\left(n + 1\right) \left(n + 2\right)}$$
Тригонометрическая часть
[src] 1 1
----- - -----
1 + n 2 + n
$$- \frac{1}{n + 2} + \frac{1}{n + 1}$$
$$- \frac{1}{n + 2} + \frac{1}{n + 1}$$