((1/x-2*x/(3*(15+x/1000)) ... (10+1000000/x) если x=1/2 (упростите выражение)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
1        2*x              10            
- - ------------- + --------------      
x     /      x  \   15*x + 3000000      
    3*|15 + ----|                       
      \     1000/                     10
---------------------------------- - ---
         1         1                 x*3
         -- + -----------               
         10       1000000               
              5 + -------               
                     x                  
----------------------------------------
                   1000000              
              10 + -------              
                      x                 
$$\frac{1}{10 + \frac{1000000}{x}} \left(\frac{1}{\frac{1}{10} + \frac{1}{5 + \frac{1000000}{x}}} \left(- 2 x \frac{1}{\frac{3 x}{1000} + 45} + \frac{1}{x} + \frac{10}{15 x + 3000000}\right) - 10 \frac{1}{3 x}\right)$$
Подстановка условия [src]
((1/x - 2*x/3*(15 + x/1000) + 10/(15*x + 3000000))/(1/10 + 1/(5 + 1000000/x)) - 10/x*3)/(10 + 1000000/x) при x = 1/2
((1/x - 2*x/3*(15 + x/1000) + 10/(15*x + 3000000))/(1/10 + 1/(5 + 1000000/x)) - 10/x*3)/(10 + 1000000/x)
$$\frac{1}{10 + \frac{1000000}{x}} \left(\frac{1}{\frac{1}{10} + \frac{1}{5 + \frac{1000000}{x}}} \left(- 2 x \frac{1}{\frac{3 x}{1000} + 45} + \frac{1}{x} + \frac{10}{15 x + 3000000}\right) - 10 \frac{1}{3 x}\right)$$
((1/(1/2) - 2*(1/2)/3*(15 + (1/2)/1000) + 10/(15*(1/2) + 3000000))/(1/10 + 1/(5 + 1000000/(1/2))) - 10/(1/2)*3)/(10 + 1000000/(1/2))
$$\frac{1}{10 + \frac{1000000}{(1/2)}} \left(\frac{1}{\frac{1}{10} + \frac{1}{5 + \frac{1000000}{(1/2)}}} \left(- 2 (1/2) \frac{1}{\frac{3 (1/2)}{1000} + 45} + \frac{1}{(1/2)} + \frac{10}{15 (1/2) + 3000000}\right) - 10 \frac{1}{3 (1/2)}\right)$$
((1/(1/2) - 2/2/3*(15 + 1/(2*1000)) + 10/(15/2 + 3000000))/(1/10 + 1/(5 + 1000000/(1/2))) - 10/3/2)/(10 + 1000000/(1/2))
/2\ |-| 1 \2/ 10 2 - --------------- + ------------ / 1 \ 15 3*|15 + ------| -- + 3000000 \ 2*1000/ 2 10 ----------------------------------- - --- 1 1 /3\ -- + ----------- |-| 10 1000000 \2/ 5 + ------- 1/2 ----------------------------------------- 1000000 10 + ------- 1/2
47201718004/7200330003270009
$$\frac{47201718004}{7200330003270009}$$
Степени [src]
        1         10            2*x   
        - + -------------- - ---------
        x   3000000 + 15*x        3*x 
                             45 + ----
   10                             1000
- --- + ------------------------------
  3*x          1         1            
               -- + -----------       
               10       1000000       
                    5 + -------       
                           x          
--------------------------------------
                  1000000             
             10 + -------             
                     x                
$$\frac{1}{10 + \frac{1000000}{x}} \left(\frac{1}{\frac{1}{10} + \frac{1}{5 + \frac{1000000}{x}}} \left(- \frac{2 x}{\frac{3 x}{1000} + 45} + \frac{10}{15 x + 3000000} + \frac{1}{x}\right) - \frac{10}{3 x}\right)$$
Численный ответ [src]
(-3.33333333333333/x + (1/x + 10.0/(3000000.0 + 15.0*x) - 2.0*x/(45.0 + 0.003*x))/(0.1 + 1/(5.0 + 1000000.0/x)))/(10.0 + 1000000.0/x)
Рациональный знаменатель [src]
                      3                  4            5                    2                        
- 179999998132500000*x  - 1799999995500*x  - 4500000*x  + 207000000000000*x  + 2700000000000000000*x
----------------------------------------------------------------------------------------------------
                 30*x*(45000 + 3*x)*(100000 + x)*(1000000 + 15*x)*(3000000 + 15*x)                  
$$\frac{- 4500000 x^{5} - 1799999995500 x^{4} - 179999998132500000 x^{3} + 207000000000000 x^{2} + 2700000000000000000 x}{30 x \left(x + 100000\right) \left(3 x + 45000\right) \left(15 x + 1000000\right) \left(15 x + 3000000\right)}$$
Объединение рациональных выражений [src]
             /              2      \                                               
(200000 + x)*\45000 - 2000*x  + 3*x/ - (15000 + x)*(200000 + 3*x) + 2*x*(15000 + x)
-----------------------------------------------------------------------------------
                     3*(15000 + x)*(100000 + x)*(200000 + 3*x)                     
$$\frac{1}{3 \left(x + 15000\right) \left(x + 100000\right) \left(3 x + 200000\right)} \left(2 x \left(x + 15000\right) - \left(x + 15000\right) \left(3 x + 200000\right) + \left(x + 200000\right) \left(- 2000 x^{2} + 3 x + 45000\right)\right)$$
Общее упрощение [src]
 /                               3              2\ 
-\-6000000000 - 430000*x + 2000*x  + 399999998*x / 
---------------------------------------------------
                     3            2                
900000000000000 + 9*x  + 1635000*x  + 82500000000*x
$$- \frac{2000 x^{3} + 399999998 x^{2} - 430000 x - 6000000000}{9 x^{3} + 1635000 x^{2} + 82500000000 x + 900000000000000}$$
Общий знаменатель [src]
                                                             2 
  2000   -600000018000000000 - 55000001290000*x + 109999994*x  
- ---- - ------------------------------------------------------
   9                            3            2                 
         2700000000000000 + 27*x  + 4905000*x  + 247500000000*x
$$- \frac{109999994 x^{2} - 55000001290000 x - 600000018000000000}{27 x^{3} + 4905000 x^{2} + 247500000000 x + 2700000000000000} - \frac{2000}{9}$$
Комбинаторика [src]
                  /                   2\ 
  -2*(200000 + x)*\-15000 - x + 1000*x / 
-----------------------------------------
3*(15000 + x)*(100000 + x)*(200000 + 3*x)
$$- \frac{2 \left(x + 200000\right) \left(1000 x^{2} - x - 15000\right)}{3 \left(x + 15000\right) \left(x + 100000\right) \left(3 x + 200000\right)}$$
Раскрыть выражение [src]
        1         10              2*x     
        - + -------------- - -------------
        x   15*x + 3000000     /      x  \
                             3*|15 + ----|
   10                          \     1000/
- --- + ----------------------------------
  3*x            1         1              
                 -- + -----------         
                 10       1000000         
                      5 + -------         
                             x            
------------------------------------------
                    1000000               
               10 + -------               
                       x                  
$$\frac{1}{10 + \frac{1000000}{x}} \left(\frac{1}{\frac{1}{10} + \frac{1}{5 + \frac{1000000}{x}}} \left(- \frac{2 x}{\frac{3 x}{1000} + 45} + \frac{10}{15 x + 3000000} + \frac{1}{x}\right) - \frac{10}{3 x}\right)$$