Подстановка условия
[src]1/(x - y) - 1/(y - x) - 2*x/(x^2 - y^2) при y = 1/3
1/(x - y) - 1/(y - x) - 2*x/(x^2 - y^2)
$$- \frac{2 x}{x^{2} - y^{2}} + \frac{1}{x - y} - \frac{1}{- x + y}$$
1/(x - (1/3)) - 1/((1/3) - x) - 2*x/(x^2 - (1/3)^2)
$$- \frac{2 x}{- (1/3)^{2} + x^{2}} + - \frac{1}{(1/3) - x} + \frac{1}{- (1/3) + x}$$
1/(x - 1/3) - 1/(1/3 - x) - 2*x/(x^2 - (1/3)^2)
$$- \frac{2 x}{x^{2} - \frac{1}{9}} + \frac{1}{x - \frac{1}{3}} - \frac{1}{- x + \frac{1}{3}}$$
1/(-1/3 + x) - 1/(1/3 - x) - 2*x/(-1/9 + x^2)
$$- \frac{2 x}{x^{2} - \frac{1}{9}} + \frac{1}{x - \frac{1}{3}} - \frac{1}{- x + \frac{1}{3}}$$
Рациональный знаменатель
[src]/ 2 2\
\x - y /*(-2*x + 2*y) - 2*x*(x - y)*(y - x)
--------------------------------------------
/ 2 2\
(x - y)*(y - x)*\x - y /
$$\frac{- 2 x \left(- x + y\right) \left(x - y\right) + \left(- 2 x + 2 y\right) \left(x^{2} - y^{2}\right)}{\left(- x + y\right) \left(x - y\right) \left(x^{2} - y^{2}\right)}$$
Объединение рациональных выражений
[src] / 2 2 \
2*\x - y - x*(x - y)/
-----------------------
/ 2 2\
(x - y)*\x - y /
$$\frac{2 x^{2} - 2 x \left(x - y\right) - 2 y^{2}}{\left(x - y\right) \left(x^{2} - y^{2}\right)}$$