Тригонометрическая часть
[src] // 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| |
|| / 1 for And(im(t) = 0, t mod pi = 0) |
|| | |
|| | 2 |
1 - |< <-1 + cot (t) |
|| |------------ otherwise |
|| | 2 |
||1 \1 + cot (t) |
||- + ----------------------------------------------- otherwise |
\\2 2 /
$$1 - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\left(\frac{\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{\cot^{2}{\left(t \right)} - 1}{\cot^{2}{\left(t \right)} + 1} & \text{otherwise} \end{cases}}{2}\right) + \frac{1}{2} & \text{otherwise} \end{cases}\right)$$
1 cos(2*t)
- - --------
2 2
$$\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}$$
// 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| |
|| / 1 for And(im(t) = 0, t mod pi = 0) |
1 - |< < |
||1 \cos(2*t) otherwise |
||- + ------------------------------------------- otherwise |
\\2 2 /
$$1 - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\left(\frac{\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\cos{\left(2 t \right)} & \text{otherwise} \end{cases}}{2}\right) + \frac{1}{2} & \text{otherwise} \end{cases}\right)$$
// 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| |
|| /pi \ |
1 - |< sin|-- + 2*t| |
||1 \2 / |
||- + ------------- otherwise |
\\2 2 /
$$1 - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\sin{\left(2 t + \frac{\pi}{2} \right)}}{2} + \frac{1}{2} & \text{otherwise} \end{cases}\right)$$
/ 2/t\\ / 2/t\\
| 1 - tan |-|| | 1 - tan |-||
| \2/| | \2/|
|1 + -----------|*|1 - -----------|
| 2/t\| | 2/t\|
| 1 + tan |-|| | 1 + tan |-||
\ \2// \ \2//
$$\left(- \frac{1 - \tan^{2}{\left(\frac{t}{2} \right)}}{\tan^{2}{\left(\frac{t}{2} \right)} + 1} + 1\right) \left(\frac{1 - \tan^{2}{\left(\frac{t}{2} \right)}}{\tan^{2}{\left(\frac{t}{2} \right)} + 1} + 1\right)$$
1
------------
2/ pi\
sec |t - --|
\ 2 /
$$\frac{1}{\sec^{2}{\left(t - \frac{\pi}{2} \right)}}$$
/ 0 for And(im(t) = 0, t mod pi = 0)
|
< 2
|sin (t) otherwise
\
$$\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\sin^{2}{\left(t \right)} & \text{otherwise} \end{cases}$$
2/ pi\
cos |t - --|
\ 2 /
$$\cos^{2}{\left(t - \frac{\pi}{2} \right)}$$
// 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| |
1 - |< 2 |
||cos (t) otherwise |
\\ /
$$1 - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\cos^{2}{\left(t \right)} & \text{otherwise} \end{cases}\right)$$
$$\sin^{2}{\left(t \right)}$$
// 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| |
||1 1 |
1 - |<- + --------------- otherwise |
||2 /pi \ |
|| 2*csc|-- - 2*t| |
\\ \2 / /
$$1 - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{1}{2} + \frac{1}{2 \csc{\left(- 2 t + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)$$
/ 0 for And(im(t) = 0, t mod pi = 0)
|
| 2/t\
| 4*cot |-|
| \2/
<-------------- otherwise
| 2
|/ 2/t\\
||1 + cot |-||
|\ \2//
\
$$\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{t}{2} \right)}}{\left(\cot^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}$$
/ // 1 for And(im(t) = 0, t mod 2*pi = 0)\\ / // 1 for And(im(t) = 0, t mod 2*pi = 0)\\
| || || | || ||
| || 2/t\ || | || 2/t\ ||
| ||-1 + cot |-| || | ||-1 + cot |-| ||
|1 - |< \2/ ||*|1 + |< \2/ ||
| ||------------ otherwise || | ||------------ otherwise ||
| || 2/t\ || | || 2/t\ ||
| ||1 + cot |-| || | ||1 + cot |-| ||
\ \\ \2/ // \ \\ \2/ //
$$\left(1 - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{t}{2} \right)} - 1}{\cot^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) \left(\left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{t}{2} \right)} - 1}{\cot^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) + 1\right)$$
// 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| |
|| 2 |
1 - |<1 1 - tan (t) |
||- + --------------- otherwise |
||2 / 2 \ |
\\ 2*\1 + tan (t)/ /
$$1 - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(t \right)}}{2 \left(\tan^{2}{\left(t \right)} + 1\right)} + \frac{1}{2} & \text{otherwise} \end{cases}\right)$$
// 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| |
1 - |<1 cos(2*t) |
||- + -------- otherwise |
\\2 2 /
$$1 - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\cos{\left(2 t \right)}}{2} + \frac{1}{2} & \text{otherwise} \end{cases}\right)$$
/ / pi\\ / / pi\\
|1 - sin|t + --||*|1 + sin|t + --||
\ \ 2 // \ \ 2 //
$$\left(1 - \sin{\left(t + \frac{\pi}{2} \right)}\right) \left(\sin{\left(t + \frac{\pi}{2} \right)} + 1\right)$$
/ 1 \ / 1 \
|1 + -----------|*|1 - -----------|
| /pi \| | /pi \|
| csc|-- - t|| | csc|-- - t||
\ \2 // \ \2 //
$$\left(1 - \frac{1}{\csc{\left(- t + \frac{\pi}{2} \right)}}\right) \left(1 + \frac{1}{\csc{\left(- t + \frac{\pi}{2} \right)}}\right)$$
/ 1 \ / 1 \
|1 + ------|*|1 - ------|
\ sec(t)/ \ sec(t)/
$$\left(1 - \frac{1}{\sec{\left(t \right)}}\right) \left(1 + \frac{1}{\sec{\left(t \right)}}\right)$$
$$\frac{1}{\csc^{2}{\left(t \right)}}$$
2/t\
4*tan |-|
\2/
--------------
2
/ 2/t\\
|1 + tan |-||
\ \2//
$$\frac{4 \tan^{2}{\left(\frac{t}{2} \right)}}{\left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2}}$$
// 1 for And(im(t) = 0, t mod 2*pi = 0)\
|| |
1 - |<1 1 |
||- + ---------- otherwise |
\\2 2*sec(2*t) /
$$1 - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{1}{2} + \frac{1}{2 \sec{\left(2 t \right)}} & \text{otherwise} \end{cases}\right)$$