Тригонометрическая часть
[src] // 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | || |
|| 1 | || 1 |
1 - |<------- otherwise | + 2*|<------------ otherwise |
|| 2 | || 2/pi \ |
||csc (x) | ||csc |-- - x| |
\\ / \\ \2 / /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{1}{\csc^{2}{\left(x \right)}} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{1}{\csc^{2}{\left(- x + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + 1$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | || |
|| 2/x\ | || 2 |
|| 4*tan |-| | ||/ 2/x\\ |
|| \2/ | |||1 - tan |-|| |
1 - |<-------------- otherwise | + 2*|<\ \2// |
|| 2 | ||-------------- otherwise |
||/ 2/x\\ | || 2 |
|||1 + tan |-|| | ||/ 2/x\\ |
||\ \2// | |||1 + tan |-|| |
\\ / \\\ \2// /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{4 \tan^{2}{\left(\frac{x}{2} \right)}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right) + 1$$
2
2/x\ / 2/x\\
4*tan |-| 2*|1 - tan |-||
\2/ \ \2//
1 - -------------- + ----------------
2 2
/ 2/x\\ / 2/x\\
|1 + tan |-|| |1 + tan |-||
\ \2// \ \2//
$$\frac{2 \left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} + 1 - \frac{4 \tan^{2}{\left(\frac{x}{2} \right)}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}$$
3 3*cos(2*x)
- + ----------
2 2
$$\frac{3 \cos{\left(2 x \right)}}{2} + \frac{3}{2}$$
2 2
1 - sin (x) + 2*cos (x)
$$- \sin^{2}{\left(x \right)} + 2 \cos^{2}{\left(x \right)} + 1$$
$$\frac{3}{\sec^{2}{\left(x \right)}}$$
// 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| |
3*|< 2 |
||cos (x) otherwise |
\\ /
$$3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases}\right)$$
2/ pi\
3*sin |x + --|
\ 2 /
$$3 \sin^{2}{\left(x + \frac{\pi}{2} \right)}$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | || |
||/ 0 for And(im(x) = 0, x mod pi = 0) | ||/ 1 for And(im(x) = 0, x mod 2*pi = 0) |
||| | ||| |
||| 2/x\ | ||| 2 |
||| 4*cot |-| | |||/ 2/x\\ |
1 - |<| \2/ | + 2*|<||-1 + cot |-|| |
||<-------------- otherwise otherwise | ||<\ \2// otherwise |
||| 2 | |||--------------- otherwise |
|||/ 2/x\\ | ||| 2 |
||||1 + cot |-|| | ||| / 2/x\\ |
|||\ \2// | ||| |1 + cot |-|| |
\\\ / \\\ \ \2// /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{x}{2} \right)}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + 1$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | || |
|| 1 | || 1 |
1 - |<------------ otherwise | + 2*|<------- otherwise |
|| 2/ pi\ | || 2 |
||sec |x - --| | ||sec (x) |
\\ \ 2 / / \\ /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{1}{\sec^{2}{\left(x - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{1}{\sec^{2}{\left(x \right)}} & \text{otherwise} \end{cases}\right)\right) + 1$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | || |
1 - |< 2/ pi\ | + 2*|< 2 |
||cos |x - --| otherwise | ||cos (x) otherwise |
\\ \ 2 / / \\ /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\cos^{2}{\left(x - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases}\right)\right) + 1$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | || |
||/ 0 for And(im(x) = 0, x mod pi = 0) | ||/ 1 for And(im(x) = 0, x mod 2*pi = 0) |
1 - |<| | + 2*|<| |
||< 2 otherwise | ||< 2 otherwise |
|||sin (x) otherwise | |||cos (x) otherwise |
\\\ / \\\ /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\sin^{2}{\left(x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + 1$$
1 2
1 - ------------ + -------
2/ pi\ 2
sec |x - --| sec (x)
\ 2 /
$$1 - \frac{1}{\sec^{2}{\left(x - \frac{\pi}{2} \right)}} + \frac{2}{\sec^{2}{\left(x \right)}}$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | || |
1 - |< 2 | + 2*|< 2/ pi\ |
||sin (x) otherwise | ||sin |x + --| otherwise |
\\ / \\ \ 2 / /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\sin^{2}{\left(x \right)} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\sin^{2}{\left(x + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + 1$$
1 2
1 - ------- + -------
2 2
csc (x) sec (x)
$$1 + \frac{2}{\sec^{2}{\left(x \right)}} - \frac{1}{\csc^{2}{\left(x \right)}}$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | || |
|| 2/x\ | || 2 |
|| 4*cot |-| | ||/ 2/x\\ |
|| \2/ | |||-1 + cot |-|| |
1 - |<-------------- otherwise | + 2*|<\ \2// |
|| 2 | ||--------------- otherwise |
||/ 2/x\\ | || 2 |
|||1 + cot |-|| | || / 2/x\\ |
||\ \2// | || |1 + cot |-|| |
\\ / \\ \ \2// /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{x}{2} \right)}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right) + 1$$
1 2
1 - ------- + ------------
2 2/pi \
csc (x) csc |-- - x|
\2 /
$$1 + \frac{2}{\csc^{2}{\left(- x + \frac{\pi}{2} \right)}} - \frac{1}{\csc^{2}{\left(x \right)}}$$
2/ pi\ 2
1 - cos |x - --| + 2*cos (x)
\ 2 /
$$2 \cos^{2}{\left(x \right)} - \cos^{2}{\left(x - \frac{\pi}{2} \right)} + 1$$
2
/ 2/x\\
3*|1 - tan |-||
\ \2//
----------------
2
/ 2/x\\
|1 + tan |-||
\ \2//
$$\frac{3 \left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}$$
$$3 \cos^{2}{\left(x \right)}$$
2 2/ pi\
1 - sin (x) + 2*sin |x + --|
\ 2 /
$$- \sin^{2}{\left(x \right)} + 2 \sin^{2}{\left(x + \frac{\pi}{2} \right)} + 1$$
3
------------
2/pi \
csc |-- - x|
\2 /
$$\frac{3}{\csc^{2}{\left(- x + \frac{\pi}{2} \right)}}$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | || |
1 - |< 2 | + 2*|< 2 |
||sin (x) otherwise | ||cos (x) otherwise |
\\ / \\ /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\sin^{2}{\left(x \right)} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases}\right)\right) + 1$$
// 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| |
|| 2 |
||/ 2/x\\ |
|||-1 + cot |-|| |
3*|<\ \2// |
||--------------- otherwise |
|| 2 |
|| / 2/x\\ |
|| |1 + cot |-|| |
\\ \ \2// /
$$3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)$$