Подстановка условия
[src]1 + sqrt(2)*cos(a) при a = -1/3
$$\sqrt{2} \cos{\left(a \right)} + 1$$
$$\sqrt{2} \cos{\left(a \right)} + 1$$
___
1 + \/ 2 *cos((-1/3))
$$\sqrt{2} \cos{\left((-1/3) \right)} + 1$$
$$1 + \sqrt{2} \cos{\left(- \frac{1}{3} \right)}$$
$$1 + \sqrt{2} \cos{\left(\frac{1}{3} \right)}$$
Тригонометрическая часть
[src] // 1 for And(im(a) = 0, a mod 2*pi = 0)\
___ || |
1 + \/ 2 *| 1 for And(im(a) = 0, a mod 2*pi = 0) |
||< otherwise |
\\\cos(a) otherwise /
$$\left(\sqrt{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + 1$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
||/ 1 for And(im(a) = 0, a mod 2*pi = 0) |
||| |
___ ||| 2/a\ |
1 + \/ 2 *|<|-1 + cot |-| |
||< \2/ otherwise |
|||------------ otherwise |
||| 2/a\ |
|||1 + cot |-| |
\\\ \2/ /
$$\left(\sqrt{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + 1$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
|| 2/a\ |
___ ||-1 + cot |-| |
1 + \/ 2 *|< \2/ |
||------------ otherwise |
|| 2/a\ |
||1 + cot |-| |
\\ \2/ /
$$\left(\sqrt{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + 1$$
___ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
1 + \/ 2 *|< |
\\cos(a) otherwise /
$$\left(\sqrt{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + 1$$
___
\/ 2
1 + ------
sec(a)
$$1 + \frac{\sqrt{2}}{\sec{\left(a \right)}}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
___ || |
1 + \/ 2 *|< 1 |
||------ otherwise |
\\sec(a) /
$$\left(\sqrt{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(a \right)}} & \text{otherwise} \end{cases}\right)\right) + 1$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
___ || 1 |
1 + \/ 2 *|<----------- otherwise |
|| /pi \ |
||csc|-- - a| |
\\ \2 / /
$$\left(\sqrt{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + 1$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
|| 2/a\ |
___ ||1 - tan |-| |
1 + \/ 2 *|< \2/ |
||----------- otherwise |
|| 2/a\ |
||1 + tan |-| |
\\ \2/ /
$$\left(\sqrt{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + 1$$
___ / 2/a\\
\/ 2 *|1 - tan |-||
\ \2//
1 + -------------------
2/a\
1 + tan |-|
\2/
$$\frac{\sqrt{2} \cdot \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} + 1$$
___
\/ 2
1 + -----------
/pi \
csc|-- - a|
\2 /
$$1 + \frac{\sqrt{2}}{\csc{\left(- a + \frac{\pi}{2} \right)}}$$
___ / pi\
1 + \/ 2 *sin|a + --|
\ 2 /
$$\sqrt{2} \sin{\left(a + \frac{\pi}{2} \right)} + 1$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
___ || |
1 + \/ 2 *|< / pi\ |
||sin|a + --| otherwise |
\\ \ 2 / /
$$\left(\sqrt{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\sin{\left(a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + 1$$