Тригонометрическая часть
[src] 5 5
-------------------- + --------------------
/ pi\ / pi\
sec(x)*sec|2*x - --| sec(2*x)*sec|x - --|
\ 2 / \ 2 /$$\frac{5}{\sec{\left(2 x \right)} \sec{\left(x - \frac{\pi}{2} \right)}} + \frac{5}{\sec{\left(x \right)} \sec{\left(2 x - \frac{\pi}{2} \right)}}$$
5 5
-------------------- + --------------------
/pi \ /pi \
csc(x)*csc|-- - 2*x| csc(2*x)*csc|-- - x|
\2 / \2 /$$\frac{5}{\csc{\left(2 x \right)} \csc{\left(- x + \frac{\pi}{2} \right)}} + \frac{5}{\csc{\left(x \right)} \csc{\left(- 2 x + \frac{\pi}{2} \right)}}$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 0 for And(im(x) = 0, 2*x mod pi = 0)\
|| | // 1 for And(im(x) = 0, x mod pi = 0)\ || | // 1 for And(im(x) = 0, x mod 2*pi = 0)\
5*|< / pi\ |*|< | + 5*|< / pi\ |*|< |
||cos|x - --| otherwise | \\cos(2*x) otherwise / ||cos|2*x - --| otherwise | \\cos(x) otherwise /
\\ \ 2 / / \\ \ 2 / /
$$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\cos{\left(x - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\cos{\left(2 x \right)} & \text{otherwise} \end{cases}\right)\right) + \left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\cos{\left(2 x - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos{\left(x \right)} & \text{otherwise} \end{cases}\right)\right)$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | // 1 for And(im(x) = 0, x mod pi = 0)\ // 0 for And(im(x) = 0, 2*x mod pi = 0)\ || |
|| /x\ | || | || | || 2/x\ |
|| 2*tan|-| | || 2 | || 2*tan(x) | ||1 - tan |-| |
5*|< \2/ |*|<1 - tan (x) | + 5*|<----------- otherwise |*|< \2/ |
||----------- otherwise | ||----------- otherwise | || 2 | ||----------- otherwise |
|| 2/x\ | || 2 | ||1 + tan (x) | || 2/x\ |
||1 + tan |-| | \\1 + tan (x) / \\ / ||1 + tan |-| |
\\ \2/ / \\ \2/ /
$$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{1 - \tan^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\frac{2 \tan{\left(x \right)}}{\tan^{2}{\left(x \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)$$
5 5 5
-------- + ---------- + --------------------
2*csc(x) 2*csc(3*x) /pi \
csc(x)*csc|-- - 2*x|
\2 /$$\frac{5}{2 \csc{\left(3 x \right)}} + \frac{5}{2 \csc{\left(x \right)}} + \frac{5}{\csc{\left(x \right)} \csc{\left(- 2 x + \frac{\pi}{2} \right)}}$$
$$\frac{5}{\csc{\left(3 x \right)}}$$
5*sin(x) 5*sin(3*x)
-------- + ---------- + 5*cos(2*x)*sin(x)
2 2
$$5 \sin{\left(x \right)} \cos{\left(2 x \right)} + \frac{5 \sin{\left(x \right)}}{2} + \frac{5 \sin{\left(3 x \right)}}{2}$$
/ 2 \ /x\ / 2/x\\
10*\1 - tan (x)/*tan|-| 10*|1 - tan |-||*tan(x)
\2/ \ \2//
--------------------------- + ---------------------------
/ 2 \ / 2/x\\ / 2 \ / 2/x\\
\1 + tan (x)/*|1 + tan |-|| \1 + tan (x)/*|1 + tan |-||
\ \2// \ \2//$$\frac{10 \cdot \left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right) \tan{\left(x \right)}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \left(\tan^{2}{\left(x \right)} + 1\right)} + \frac{10 \cdot \left(1 - \tan^{2}{\left(x \right)}\right) \tan{\left(\frac{x}{2} \right)}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \left(\tan^{2}{\left(x \right)} + 1\right)}$$
/ pi\
5*cos|3*x - --|
\ 2 /$$5 \cos{\left(3 x - \frac{\pi}{2} \right)}$$
// 1 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
// 0 for And(im(x) = 0, x mod pi = 0)\ || | // 0 for And(im(x) = 0, 2*x mod pi = 0)\ || |
|| | || 1 | || | || 1 |
5*|< 1 |*|<------------- otherwise | + 5*|< 1 |*|<----------- otherwise |
||------ otherwise | || /pi \ | ||-------- otherwise | || /pi \ |
\\csc(x) / ||csc|-- - 2*x| | \\csc(2*x) / ||csc|-- - x| |
\\ \2 / / \\ \2 / /$$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{1}{\csc{\left(x \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{1}{\csc{\left(- 2 x + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\frac{1}{\csc{\left(2 x \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- x + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right)$$
// 0 for And(im(x) = 0, 3*x mod pi = 0)\
5*|< |
\\sin(3*x) otherwise /
$$5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\sin{\left(3 x \right)} & \text{otherwise} \end{cases}\right)$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | // 1 for And(im(x) = 0, x mod pi = 0)\ // 0 for And(im(x) = 0, 2*x mod pi = 0)\ || |
|| /x\ | || | || | || 2/x\ |
|| 2*cot|-| | || 2 | || 2*cot(x) | ||-1 + cot |-| |
5*|< \2/ |*|<-1 + cot (x) | + 5*|<----------- otherwise |*|< \2/ |
||----------- otherwise | ||------------ otherwise | || 2 | ||------------ otherwise |
|| 2/x\ | || 2 | ||1 + cot (x) | || 2/x\ |
||1 + cot |-| | \\1 + cot (x) / \\ / ||1 + cot |-| |
\\ \2/ / \\ \2/ /
$$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{\cot^{2}{\left(x \right)} - 1}{\cot^{2}{\left(x \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\frac{2 \cot{\left(x \right)}}{\cot^{2}{\left(x \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{x}{2} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)$$
// 0 for And(im(x) = 0, 3*x mod pi = 0)\
|| |
|| /3*x\ |
|| 2*cot|---| |
5*|< \ 2 / |
||------------- otherwise |
|| 2/3*x\ |
||1 + cot |---| |
\\ \ 2 / /
$$5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 x}{2} \right)}}{\cot^{2}{\left(\frac{3 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)$$
/ pi\ / pi\
5*cos|x - --| 5*cos|3*x - --|
\ 2 / \ 2 / / pi\
------------- + --------------- + 5*cos(2*x)*cos|x - --|
2 2 \ 2 /$$5 \cos{\left(2 x \right)} \cos{\left(x - \frac{\pi}{2} \right)} + \frac{5 \cos{\left(x - \frac{\pi}{2} \right)}}{2} + \frac{5 \cos{\left(3 x - \frac{\pi}{2} \right)}}{2}$$
/ pi\ / pi\
5*cos(x)*cos|2*x - --| + 5*cos(2*x)*cos|x - --|
\ 2 / \ 2 /$$5 \cos{\left(x \right)} \cos{\left(2 x - \frac{\pi}{2} \right)} + 5 \cos{\left(2 x \right)} \cos{\left(x - \frac{\pi}{2} \right)}$$
$$5 \sin{\left(3 x \right)}$$
/pi \ / pi\
5*sin(x)*sin|-- + 2*x| + 5*sin(2*x)*sin|x + --|
\2 / \ 2 /$$5 \sin{\left(x \right)} \sin{\left(2 x + \frac{\pi}{2} \right)} + 5 \sin{\left(2 x \right)} \sin{\left(x + \frac{\pi}{2} \right)}$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod pi = 0)\ // 0 for And(im(x) = 0, 2*x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | || | || | || |
5*| 0 for And(im(x) = 0, x mod pi = 0) |*| 1 for And(im(x) = 0, x mod pi = 0) | + 5*| 0 for And(im(x) = 0, 2*x mod pi = 0) |*| 1 for And(im(x) = 0, x mod 2*pi = 0) |
||< otherwise | ||< otherwise | ||< otherwise | ||< otherwise |
\\\sin(x) otherwise / \\\cos(2*x) otherwise / \\\sin(2*x) otherwise / \\\cos(x) otherwise /
$$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\sin{\left(x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\cos{\left(2 x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\sin{\left(2 x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos{\left(x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)$$
/3*x\
10*tan|---|
\ 2 /
-------------
2/3*x\
1 + tan |---|
\ 2 /$$\frac{10 \tan{\left(\frac{3 x}{2} \right)}}{\tan^{2}{\left(\frac{3 x}{2} \right)} + 1}$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 0 for And(im(x) = 0, 3*x mod pi = 0)\
5*|< | 5*|< |
\\sin(x) otherwise / \\sin(3*x) otherwise / // 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod pi = 0)\
--------------------------------------------- + ------------------------------------------------- + 5*|< |*|< |
2 2 \\sin(x) otherwise / \\cos(2*x) otherwise /$$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\sin{\left(x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\cos{\left(2 x \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\frac{5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\sin{\left(x \right)} & \text{otherwise} \end{cases}\right)}{2}\right) + \left(\frac{5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\sin{\left(3 x \right)} & \text{otherwise} \end{cases}\right)}{2}\right)$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 0 for And(im(x) = 0, 2*x mod pi = 0)\
|| | // 1 for And(im(x) = 0, x mod pi = 0)\ || | // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| 1 | || | || 1 | || |
5*|<----------- otherwise |*|< 1 | + 5*|<------------- otherwise |*|< 1 |
|| / pi\ | ||-------- otherwise | || / pi\ | ||------ otherwise |
||sec|x - --| | \\sec(2*x) / ||sec|2*x - --| | \\sec(x) /
\\ \ 2 / / \\ \ 2 / /
$$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{1}{\sec{\left(x - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{1}{\sec{\left(2 x \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\frac{1}{\sec{\left(2 x - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(x \right)}} & \text{otherwise} \end{cases}\right)\right)$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod pi = 0)\ // 0 for And(im(x) = 0, 2*x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
5*|< |*|< | + 5*|< |*|< |
\\sin(x) otherwise / \\cos(2*x) otherwise / \\sin(2*x) otherwise / \\cos(x) otherwise /
$$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\sin{\left(x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\cos{\left(2 x \right)} & \text{otherwise} \end{cases}\right)\right) + \left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\sin{\left(2 x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos{\left(x \right)} & \text{otherwise} \end{cases}\right)\right)$$
5
-------------
/ pi\
sec|3*x - --|
\ 2 /
$$\frac{5}{\sec{\left(3 x - \frac{\pi}{2} \right)}}$$
5*sin(x) 5*sin(3*x) /pi \
-------- + ---------- + 5*sin(x)*sin|-- + 2*x|
2 2 \2 /
$$5 \sin{\left(x \right)} \sin{\left(2 x + \frac{\pi}{2} \right)} + \frac{5 \sin{\left(x \right)}}{2} + \frac{5 \sin{\left(3 x \right)}}{2}$$
5 5 5
------------- + --------------- + --------------------
/ pi\ / pi\ / pi\
2*sec|x - --| 2*sec|3*x - --| sec(2*x)*sec|x - --|
\ 2 / \ 2 / \ 2 /$$\frac{5}{2 \sec{\left(3 x - \frac{\pi}{2} \right)}} + \frac{5}{2 \sec{\left(x - \frac{\pi}{2} \right)}} + \frac{5}{\sec{\left(2 x \right)} \sec{\left(x - \frac{\pi}{2} \right)}}$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| | // 1 for And(im(x) = 0, x mod pi = 0)\ // 0 for And(im(x) = 0, 2*x mod pi = 0)\ || |
||/ 0 for And(im(x) = 0, x mod pi = 0) | || | || | ||/ 1 for And(im(x) = 0, x mod 2*pi = 0) |
||| | ||/ 1 for And(im(x) = 0, x mod pi = 0) | ||/ 0 for And(im(x) = 0, 2*x mod pi = 0) | ||| |
||| /x\ | ||| | ||| | ||| 2/x\ |
5*|<| 2*cot|-| |*|<| 2 | + 5*|<| 2*cot(x) |*|<|-1 + cot |-| |
||< \2/ otherwise | ||<-1 + cot (x) otherwise | ||<----------- otherwise otherwise | ||< \2/ otherwise |
|||----------- otherwise | |||------------ otherwise | ||| 2 | |||------------ otherwise |
||| 2/x\ | ||| 2 | |||1 + cot (x) | ||| 2/x\ |
|||1 + cot |-| | \\\1 + cot (x) / \\\ / |||1 + cot |-| |
\\\ \2/ / \\\ \2/ /
$$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{\cot^{2}{\left(x \right)} - 1}{\cot^{2}{\left(x \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\frac{2 \cot{\left(x \right)}}{\cot^{2}{\left(x \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{x}{2} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)$$
// 0 for And(im(x) = 0, x mod pi = 0)\ // 0 for And(im(x) = 0, 3*x mod pi = 0)\
|| | || |
|| /x\ | || /3*x\ |
|| 2*cot|-| | || 2*cot|---| |
5*|< \2/ | 5*|< \ 2 / |
||----------- otherwise | ||------------- otherwise | // 0 for And(im(x) = 0, x mod pi = 0)\
|| 2/x\ | || 2/3*x\ | || | // 1 for And(im(x) = 0, x mod pi = 0)\
||1 + cot |-| | ||1 + cot |---| | || /x\ | || |
\\ \2/ / \\ \ 2 / / || 2*cot|-| | || 2 |
-------------------------------------------------- + ------------------------------------------------------ + 5*|< \2/ |*|<-1 + cot (x) |
2 2 ||----------- otherwise | ||------------ otherwise |
|| 2/x\ | || 2 |
||1 + cot |-| | \\1 + cot (x) /
\\ \2/ / $$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{\cot^{2}{\left(x \right)} - 1}{\cot^{2}{\left(x \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\frac{5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)}{2}\right) + \left(\frac{5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 x}{2} \right)}}{\cot^{2}{\left(\frac{3 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)}{2}\right)$$
/x\ /3*x\ / 2 \ /x\
5*tan|-| 5*tan|---| 10*\1 - tan (x)/*tan|-|
\2/ \ 2 / \2/
----------- + ------------- + ---------------------------
2/x\ 2/3*x\ / 2 \ / 2/x\\
1 + tan |-| 1 + tan |---| \1 + tan (x)/*|1 + tan |-||
\2/ \ 2 / \ \2//$$\frac{10 \cdot \left(1 - \tan^{2}{\left(x \right)}\right) \tan{\left(\frac{x}{2} \right)}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \left(\tan^{2}{\left(x \right)} + 1\right)} + \frac{5 \tan{\left(\frac{3 x}{2} \right)}}{\tan^{2}{\left(\frac{3 x}{2} \right)} + 1} + \frac{5 \tan{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1}$$
5 5
--------------- + ---------------
csc(x)*sec(2*x) csc(2*x)*sec(x)
$$\frac{5}{\csc{\left(2 x \right)} \sec{\left(x \right)}} + \frac{5}{\csc{\left(x \right)} \sec{\left(2 x \right)}}$$
// 1 for And(im(x) = 0, x mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\
// 0 for And(im(x) = 0, x mod pi = 0)\ || | // 0 for And(im(x) = 0, 2*x mod pi = 0)\ || |
5*|< |*|< /pi \ | + 5*|< |*|< / pi\ |
\\sin(x) otherwise / ||sin|-- + 2*x| otherwise | \\sin(2*x) otherwise / ||sin|x + --| otherwise |
\\ \2 / / \\ \ 2 / /$$\left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\sin{\left(x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod \pi = 0 \\\sin{\left(2 x + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(5 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 2 x \bmod \pi = 0 \\\sin{\left(2 x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\sin{\left(x + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right)$$