Подстановка условия
[src](7*(sqrt(x) - 5))/sqrt(x) + (5*sqrt(x))/x при x = -3/2
(7*(sqrt(x) - 5))/sqrt(x) + (5*sqrt(x))/x
$$\frac{5 \sqrt{x}}{x} + \frac{7}{\sqrt{x}} \left(\sqrt{x} - 5\right)$$
(7*(sqrt((-3/2)) - 5))/sqrt((-3/2)) + (5*sqrt((-3/2)))/(-3/2)
$$\frac{5 \sqrt{(-3/2)}}{(-3/2)} + \frac{7}{\sqrt{(-3/2)}} \left(\sqrt{(-3/2)} - 5\right)$$
(7*(sqrt(-3/2) - 5))/sqrt(-3/2) + (5*sqrt(-3/2))/(-3/2)
$$\frac{5 \sqrt{- \frac{3}{2}}}{- \frac{3}{2}} + \frac{7}{\sqrt{- \frac{3}{2}}} \left(-5 + \sqrt{- \frac{3}{2}}\right)$$
-5*i*sqrt(6)/3 - i*sqrt(6)*(-35 + 7*i*sqrt(6)/2)/3
$$- \frac{5 i}{3} \sqrt{6} - \frac{\sqrt{6} i}{3} \left(-35 + \frac{7 i}{2} \sqrt{6}\right)$$