Тригонометрическая часть
[src]$$\csc^{2}{\left(- b + \frac{\pi}{2} \right)}$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| 2/a\ | || 2 |
|| 4*tan |-| | ||/ 2/a\\ |
2 || \2/ | |||1 - tan |-|| |
tan (b) + |<-------------- otherwise | + |<\ \2// |
|| 2 | ||-------------- otherwise |
||/ 2/a\\ | || 2 |
|||1 + tan |-|| | ||/ 2/a\\ |
||\ \2// | |||1 + tan |-|| |
\\ / \\\ \2// /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) + \tan^{2}{\left(b \right)}$$
2/pi \ // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
csc |-- - b| || | || |
\2 / || 1 | || 1 |
------------ + |<------- otherwise | + |<------------ otherwise |
2 || 2 | || 2/pi \ |
csc (b) ||csc (a) | ||csc |-- - a| |
\\ / \\ \2 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc^{2}{\left(a \right)}} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\csc^{2}{\left(- a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) + \frac{\csc^{2}{\left(- b + \frac{\pi}{2} \right)}}{\csc^{2}{\left(b \right)}}$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
2 || | || |
tan (b) + |< 2 | + |< 2 |
||sin (a) otherwise | ||cos (a) otherwise |
\\ / \\ /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \tan^{2}{\left(b \right)}$$
2
1 1 sec (b)
------- + ------------ + ------------
2 2/ pi\ 2/ pi\
sec (a) sec |a - --| sec |b - --|
\ 2 / \ 2 /
$$\frac{\sec^{2}{\left(b \right)}}{\sec^{2}{\left(b - \frac{\pi}{2} \right)}} + \frac{1}{\sec^{2}{\left(a - \frac{\pi}{2} \right)}} + \frac{1}{\sec^{2}{\left(a \right)}}$$
1
------------
2/ pi\
sin |b + --|
\ 2 /
$$\frac{1}{\sin^{2}{\left(b + \frac{\pi}{2} \right)}}$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
2 || | || |
sec (b) || 1 | || 1 |
------------ + |<------------ otherwise | + |<------- otherwise |
2/ pi\ || 2/ pi\ | || 2 |
sec |b - --| ||sec |a - --| | ||sec (a) |
\ 2 / \\ \ 2 / / \\ /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec^{2}{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\sec^{2}{\left(a \right)}} & \text{otherwise} \end{cases}\right) + \frac{\sec^{2}{\left(b \right)}}{\sec^{2}{\left(b - \frac{\pi}{2} \right)}}$$
/ 1 for And(im(b) = 0, b mod 2*pi = 0)
|
< 2
|------------ otherwise
\1 + cos(2*b)
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{2}{\cos{\left(2 b \right)} + 1} & \text{otherwise} \end{cases}$$
$$\frac{1}{\cos^{2}{\left(b \right)}}$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| 2/a\ | || 2 |
|| 4*cot |-| | ||/ 2/a\\ |
1 || \2/ | |||-1 + cot |-|| |
------- + |<-------------- otherwise | + |<\ \2// |
2 || 2 | ||--------------- otherwise |
cot (b) ||/ 2/a\\ | || 2 |
|||1 + cot |-|| | || / 2/a\\ |
||\ \2// | || |1 + cot |-|| |
\\ / \\ \ \2// /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) + \frac{1}{\cot^{2}{\left(b \right)}}$$
4
2 2 4*sin (b)
cos (a) + sin (a) + ---------
2
sin (2*b)
$$\sin^{2}{\left(a \right)} + \frac{4 \sin^{4}{\left(b \right)}}{\sin^{2}{\left(2 b \right)}} + \cos^{2}{\left(a \right)}$$
4 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
4*sin (b) || | || |
--------- + |< 2 | + |< 2/ pi\ |
2 ||sin (a) otherwise | ||sin |a + --| otherwise |
sin (2*b) \\ / \\ \ 2 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\sin^{2}{\left(a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) + \frac{4 \sin^{4}{\left(b \right)}}{\sin^{2}{\left(2 b \right)}}$$
2
------------
1 + cos(2*b)
$$\frac{2}{\cos{\left(2 b \right)} + 1}$$
/ 1 for And(im(b) = 0, b mod 2*pi = 0)
|
| 2
| / 2/b\\
| |1 + cot |-||
< \ \2//
|--------------- otherwise
| 2
|/ 2/b\\
||-1 + cot |-||
\\ \2//
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(b\right)} = 0 \wedge b \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{b}{2} \right)} + 1\right)^{2}}{\left(\cot^{2}{\left(\frac{b}{2} \right)} - 1\right)^{2}} & \text{otherwise} \end{cases}$$
2/pi \
csc |-- - b|
1 1 \2 /
------- + ------------ + ------------
2 2/pi \ 2
csc (a) csc |-- - a| csc (b)
\2 /
$$\frac{1}{\csc^{2}{\left(- a + \frac{\pi}{2} \right)}} + \frac{\csc^{2}{\left(- b + \frac{\pi}{2} \right)}}{\csc^{2}{\left(b \right)}} + \frac{1}{\csc^{2}{\left(a \right)}}$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
||/ 0 for And(im(a) = 0, a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod 2*pi = 0) |
||| | ||| |
||| 2/a\ | ||| 2 |
1 ||| 4*cot |-| | |||/ 2/a\\ |
------- + |<| \2/ | + |<||-1 + cot |-|| |
2 ||<-------------- otherwise otherwise | ||<\ \2// otherwise |
cot (b) ||| 2 | |||--------------- otherwise |
|||/ 2/a\\ | ||| 2 |
||||1 + cot |-|| | ||| / 2/a\\ |
|||\ \2// | ||| |1 + cot |-|| |
\\\ / \\\ \ \2// /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \frac{1}{\cot^{2}{\left(b \right)}}$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
2 ||/ 0 for And(im(a) = 0, a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod 2*pi = 0) |
tan (b) + |<| | + |<| |
||< 2 otherwise | ||< 2 otherwise |
|||sin (a) otherwise | |||cos (a) otherwise |
\\\ / \\\ /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \tan^{2}{\left(b \right)}$$
4
2 2/ pi\ 4*sin (b)
sin (a) + sin |a + --| + ---------
\ 2 / 2
sin (2*b)
$$\sin^{2}{\left(a \right)} + \frac{4 \sin^{4}{\left(b \right)}}{\sin^{2}{\left(2 b \right)}} + \sin^{2}{\left(a + \frac{\pi}{2} \right)}$$
2/ pi\
cos |b - --|
2 2/ pi\ \ 2 /
cos (a) + cos |a - --| + ------------
\ 2 / 2
cos (b)
$$\cos^{2}{\left(a \right)} + \cos^{2}{\left(a - \frac{\pi}{2} \right)} + \frac{\cos^{2}{\left(b - \frac{\pi}{2} \right)}}{\cos^{2}{\left(b \right)}}$$
2/ pi\
cos |b - --| // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
\ 2 / || | || |
------------ + |< 2/ pi\ | + |< 2 |
2 ||cos |a - --| otherwise | ||cos (a) otherwise |
cos (b) \\ \ 2 / / \\ /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos^{2}{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \frac{\cos^{2}{\left(b - \frac{\pi}{2} \right)}}{\cos^{2}{\left(b \right)}}$$
2
/ 2/a\\ 2/a\
|1 - tan |-|| 4*tan |-|
2 \ \2// \2/
tan (b) + -------------- + --------------
2 2
/ 2/a\\ / 2/a\\
|1 + tan |-|| |1 + tan |-||
\ \2// \ \2//
$$\frac{\left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} + \tan^{2}{\left(b \right)} + \frac{4 \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}}$$
2
2 2 sin (b)
cos (a) + sin (a) + -------
2
cos (b)
$$\sin^{2}{\left(a \right)} + \frac{\sin^{2}{\left(b \right)}}{\cos^{2}{\left(b \right)}} + \cos^{2}{\left(a \right)}$$
2
1 1 sec (b)
------- + ------- + -------
2 2 2
csc (a) sec (a) csc (b)
$$\frac{1}{\sec^{2}{\left(a \right)}} + \frac{\sec^{2}{\left(b \right)}}{\csc^{2}{\left(b \right)}} + \frac{1}{\csc^{2}{\left(a \right)}}$$
2
/ 2/b\\
|1 + tan |-||
\ \2//
--------------
2
/ 2/b\\
|1 - tan |-||
\ \2//
$$\frac{\left(\tan^{2}{\left(\frac{b}{2} \right)} + 1\right)^{2}}{\left(1 - \tan^{2}{\left(\frac{b}{2} \right)}\right)^{2}}$$
$$\sec^{2}{\left(b \right)}$$