Тригонометрическая часть
[src] 6
/ 2/a\\ 6/a\
|1 - tan |-|| 64*tan |-| / 2 \
3 \ \2// \2/ 3*\1 - tan (2*a)/
- + -------------- + -------------- - -----------------
8 6 6 / 2 \
/ 2/a\\ / 2/a\\ 8*\1 + tan (2*a)/
|1 + tan |-|| |1 + tan |-||
\ \2// \ \2//
$$\frac{\left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{6}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{6}} - \frac{3 \cdot \left(1 - \tan^{2}{\left(2 a \right)}\right)}{8 \left(\tan^{2}{\left(2 a \right)} + 1\right)} + \frac{3}{8} + \frac{64 \tan^{6}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{6}}$$
6 2
/ 2/a\ \ / 2/a\ \
| sec |-| | | sec |-| |
| \2/ | | \2/ |
|1 - ------------| 12*|1 - ------------|
| 2/a pi\| | 2/a pi\|
| sec |- - --|| | sec |- - --||
\ \2 2 // 64 \ \2 2 //
------------------- + -------------------- + ----------------------
12/a\ 6/a\ 6/a pi\ 6/a\ 2/a pi\
sec |-| sec |-|*sec |- - --| sec |-|*sec |- - --|
\2/ \2/ \2 2 / \2/ \2 2 /
$$\frac{\left(- \frac{\sec^{2}{\left(\frac{a}{2} \right)}}{\sec^{2}{\left(\frac{a}{2} - \frac{\pi}{2} \right)}} + 1\right)^{6}}{\sec^{12}{\left(\frac{a}{2} \right)}} + \frac{12 \left(- \frac{\sec^{2}{\left(\frac{a}{2} \right)}}{\sec^{2}{\left(\frac{a}{2} - \frac{\pi}{2} \right)}} + 1\right)^{2}}{\sec^{6}{\left(\frac{a}{2} \right)} \sec^{2}{\left(\frac{a}{2} - \frac{\pi}{2} \right)}} + \frac{64}{\sec^{6}{\left(\frac{a}{2} \right)} \sec^{6}{\left(\frac{a}{2} - \frac{\pi}{2} \right)}}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
|| 6 |
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ ||/ 2/a\ \ |
|| | || | || | ||| cos |-| | |
3*|< 2/ pi\ |*|< 2 | + |< 6/ pi\ | + |<| \2/ | 12/a pi\ |
||cos |a - --| otherwise | ||cos (a) otherwise | ||cos |a - --| otherwise | |||-1 + ------------| *cos |- - --| otherwise |
\\ \ 2 / / \\ / \\ \ 2 / / ||| 2/a pi\| \2 2 / |
||| cos |- - --|| |
||\ \2 2 // |
\\ /
$$\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos^{2}{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos^{6}{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\left(\frac{\cos^{2}{\left(\frac{a}{2} \right)}}{\cos^{2}{\left(\frac{a}{2} - \frac{\pi}{2} \right)}} - 1\right)^{6} \cos^{12}{\left(\frac{a}{2} - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ || |
|| | || | || | || // / a \\ |
||/ 0 for And(im(a) = 0, a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod 2*pi = 0) | ||/ 0 for And(im(a) = 0, a mod pi = 0) | || || 0 for And|im(a) = 0, - mod pi = 0|| |
||| | ||| | ||| | || || \ 2 /| |
||| 2/a\ | ||| 2 | ||| 6/a\ | || || | |
||| 4*cot |-| | |||/ 2/a\\ | ||| 64*cot |-| | || 6 || 12/a\ | |
3*|<| \2/ |*|<||-1 + cot |-|| | + |<| \2/ | + | 2/a\\ || 4096*cot |-| | |
||<-------------- otherwise otherwise | ||<\ \2// otherwise | ||<-------------- otherwise otherwise | |||-1 + cot |-|| *|< \4/ | otherwise |
||| 2 | |||--------------- otherwise | ||| 6 | ||\ \2// ||--------------- otherwise | |
|||/ 2/a\\ | ||| 2 | |||/ 2/a\\ | || || 12 | |
||||1 + cot |-|| | ||| / 2/a\\ | ||||1 + cot |-|| | || ||/ 2/a\\ | |
|||\ \2// | ||| |1 + cot |-|| | |||\ \2// | || |||1 + cot |-|| | |
\\\ / \\\ \ \2// / \\\ / || ||\ \4// | |
\\ \\ / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{64 \cot^{6}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{6}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{6} \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \frac{a}{2} \bmod \pi = 0 \\\frac{4096 \cot^{12}{\left(\frac{a}{4} \right)}}{\left(\cot^{2}{\left(\frac{a}{4} \right)} + 1\right)^{12}} & \text{otherwise} \end{cases}\right) & \text{otherwise} \end{cases}\right)$$
1 1 3
------- + ------------ + --------------------
6 6/pi \ 2 2/pi \
csc (a) csc |-- - a| csc (a)*csc |-- - a|
\2 / \2 /
$$\frac{1}{\csc^{6}{\left(- a + \frac{\pi}{2} \right)}} + \frac{3}{\csc^{2}{\left(a \right)} \csc^{2}{\left(- a + \frac{\pi}{2} \right)}} + \frac{1}{\csc^{6}{\left(a \right)}}$$
2
/ 4/a\\
| 4*sin |-||
6 | \2/| 4/a\ 8/pi a\
/ 4/a\\ 12/a\ 12/pi a\ 48*|1 - ---------| *sin |-|*sin |-- + -|
| 4*sin |-|| 4096*sin |-|*sin |-- + -| | 2 | \2/ \2 2/
| \2/| 12/pi a\ \2/ \2 2/ \ sin (a) /
|1 - ---------| *sin |-- + -| + --------------------------- + ----------------------------------------
| 2 | \2 2/ 6 2
\ sin (a) / sin (a) sin (a)
$$\left(- \frac{4 \sin^{4}{\left(\frac{a}{2} \right)}}{\sin^{2}{\left(a \right)}} + 1\right)^{6} \sin^{12}{\left(\frac{a}{2} + \frac{\pi}{2} \right)} + \frac{48 \left(- \frac{4 \sin^{4}{\left(\frac{a}{2} \right)}}{\sin^{2}{\left(a \right)}} + 1\right)^{2} \sin^{4}{\left(\frac{a}{2} \right)} \sin^{8}{\left(\frac{a}{2} + \frac{\pi}{2} \right)}}{\sin^{2}{\left(a \right)}} + \frac{4096 \sin^{12}{\left(\frac{a}{2} \right)} \sin^{12}{\left(\frac{a}{2} + \frac{\pi}{2} \right)}}{\sin^{6}{\left(a \right)}}$$
// 1 for And(im(a) = 0, 2*a mod pi = 0)\
|| |
3*|< 2 / 2 \ | // 1 for And(im(a) = 0, a mod 2*pi = 0)\
||sin (2*a)*\-1 + cot (2*a)/ otherwise | // 0 for And(im(a) = 0, a mod pi = 0)\ || |
3 \\ / || | || 6 |
- - ------------------------------------------------------------------- + |< 6 | + | 2/a\\ 12/a\ |
8 8 ||sin (a) otherwise | |||-1 + cot |-|| *sin |-| otherwise |
\\ / ||\ \2// \2/ |
\\ /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{6}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{6} \sin^{12}{\left(\frac{a}{2} \right)} & \text{otherwise} \end{cases}\right) - \left(\frac{3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\left(\cot^{2}{\left(2 a \right)} - 1\right) \sin^{2}{\left(2 a \right)} & \text{otherwise} \end{cases}\right)}{8}\right) + \frac{3}{8}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ || |
|| | || | || | || 6 |
|| 2/a\ | || 2 | || 6/a\ | || / 1 \ 12/a\ |
|| 4*tan |-| | ||/ 2/a\\ | || 64*tan |-| | ||4096*|-1 + -------| *tan |-| |
|| \2/ | |||1 - tan |-|| | || \2/ | || | 2/a\| \4/ |
3*|<-------------- otherwise |*|<\ \2// | + |<-------------- otherwise | + |< | tan |-|| |
|| 2 | ||-------------- otherwise | || 6 | || \ \2// |
||/ 2/a\\ | || 2 | ||/ 2/a\\ | ||----------------------------- otherwise |
|||1 + tan |-|| | ||/ 2/a\\ | |||1 + tan |-|| | || 12 |
||\ \2// | |||1 + tan |-|| | ||\ \2// | || / 2/a\\ |
\\ / \\\ \2// / \\ / || |1 + tan |-|| |
\\ \ \4// /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{64 \tan^{6}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{6}} & \text{otherwise} \end{cases}\right) + \left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{4096 \left(-1 + \frac{1}{\tan^{2}{\left(\frac{a}{2} \right)}}\right)^{6} \tan^{12}{\left(\frac{a}{4} \right)}}{\left(\tan^{2}{\left(\frac{a}{4} \right)} + 1\right)^{12}} & \text{otherwise} \end{cases}\right)$$
// 1 for And(im(a) = 0, 2*a mod pi = 0)\
|| |
|| 2 | // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
3*|<-1 + cot (2*a) | || | || |
||-------------- otherwise | || 6/a\ | || 6 |
|| 2 | || 64*cot |-| | ||/ 2/a\\ |
3 \\1 + cot (2*a) / || \2/ | |||-1 + cot |-|| |
- - ------------------------------------------------------- + |<-------------- otherwise | + |<\ \2// |
8 8 || 6 | ||--------------- otherwise |
||/ 2/a\\ | || 6 |
|||1 + cot |-|| | || / 2/a\\ |
||\ \2// | || |1 + cot |-|| |
\\ / \\ \ \2// /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{64 \cot^{6}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{6}} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{6}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{6}} & \text{otherwise} \end{cases}\right) - \left(\frac{3 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{\cot^{2}{\left(2 a \right)} - 1}{\cot^{2}{\left(2 a \right)} + 1} & \text{otherwise} \end{cases}\right)}{8}\right) + \frac{3}{8}$$
6 2
/ 2/a pi\\ / 2/a pi\\
| cos |- - --|| | cos |- - --||
| \2 2 /| 12/a\ 6/a\ 6/a pi\ | \2 2 /| 6/a\ 2/a pi\
|1 - ------------| *cos |-| + 64*cos |-|*cos |- - --| + 12*|1 - ------------| *cos |-|*cos |- - --|
| 2/a\ | \2/ \2/ \2 2 / | 2/a\ | \2/ \2 2 /
| cos |-| | | cos |-| |
\ \2/ / \ \2/ /
$$\left(1 - \frac{\cos^{2}{\left(\frac{a}{2} - \frac{\pi}{2} \right)}}{\cos^{2}{\left(\frac{a}{2} \right)}}\right)^{6} \cos^{12}{\left(\frac{a}{2} \right)} + 12 \left(1 - \frac{\cos^{2}{\left(\frac{a}{2} - \frac{\pi}{2} \right)}}{\cos^{2}{\left(\frac{a}{2} \right)}}\right)^{2} \cos^{6}{\left(\frac{a}{2} \right)} \cos^{2}{\left(\frac{a}{2} - \frac{\pi}{2} \right)} + 64 \cos^{6}{\left(\frac{a}{2} \right)} \cos^{6}{\left(\frac{a}{2} - \frac{\pi}{2} \right)}$$
6 6/ pi\ 2 2/ pi\
sin (a) + sin |a + --| + 3*sin (a)*sin |a + --|
\ 2 / \ 2 /
$$\sin^{6}{\left(a \right)} + 3 \sin^{2}{\left(a \right)} \sin^{2}{\left(a + \frac{\pi}{2} \right)} + \sin^{6}{\left(a + \frac{\pi}{2} \right)}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
|| 6 |
||/ 2/a pi\\ |
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ ||| sec |- - --|| |
|| | || | || | ||| \2 2 /| |
|| 1 | || 1 | || 1 | |||-1 + ------------| |
3*|<------------ otherwise |*|<------- otherwise | + |<------------ otherwise | + |<| 2/a\ | |
|| 2/ pi\ | || 2 | || 6/ pi\ | ||| sec |-| | |
||sec |a - --| | ||sec (a) | ||sec |a - --| | ||\ \2/ / |
\\ \ 2 / / \\ / \\ \ 2 / / ||-------------------- otherwise |
|| 12/a pi\ |
|| sec |- - --| |
|| \2 2 / |
\\ /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec^{6}{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) + \left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec^{2}{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\sec^{2}{\left(a \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(-1 + \frac{\sec^{2}{\left(\frac{a}{2} - \frac{\pi}{2} \right)}}{\sec^{2}{\left(\frac{a}{2} \right)}}\right)^{6}}{\sec^{12}{\left(\frac{a}{2} - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)$$
6 12 12 2 8
/ 2/a\\ / 2/a\\ / 2/a\\ 6/a\ / 2/a\\ / 2/a\\ 2/a\
|1 - tan |-|| *|1 - tan |-|| 64*|1 - tan |-|| *tan |-| 12*|1 - tan |-|| *|1 - tan |-|| *tan |-|
\ \2// \ \4// \ \4// \2/ \ \2// \ \4// \2/
------------------------------ + -------------------------- + ----------------------------------------
12 12 8
/ 2/a\\ / 2/a\\ / 2/a\\
|1 + tan |-|| |1 + tan |-|| |1 + tan |-||
\ \4// \ \4// \ \4//
$$\frac{\left(1 - \tan^{2}{\left(\frac{a}{4} \right)}\right)^{12} \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{6}}{\left(\tan^{2}{\left(\frac{a}{4} \right)} + 1\right)^{12}} + \frac{64 \left(1 - \tan^{2}{\left(\frac{a}{4} \right)}\right)^{12} \tan^{6}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{4} \right)} + 1\right)^{12}} + \frac{12 \left(1 - \tan^{2}{\left(\frac{a}{4} \right)}\right)^{8} \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{2} \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{4} \right)} + 1\right)^{8}}$$
3 1 1 3
- + ------- + ------------ - ---------------
8 6 6/pi \ /pi \
csc (a) csc |-- - a| 8*csc|-- - 4*a|
\2 / \2 /
$$\frac{3}{8} + \frac{1}{\csc^{6}{\left(- a + \frac{\pi}{2} \right)}} - \frac{3}{8 \csc{\left(- 4 a + \frac{\pi}{2} \right)}} + \frac{1}{\csc^{6}{\left(a \right)}}$$
3 6 6/ pi\ 3*cos(4*a)
- + cos (a) + cos |a - --| - ----------
8 \ 2 / 8
$$\cos^{6}{\left(a \right)} - \frac{3 \cos{\left(4 a \right)}}{8} + \cos^{6}{\left(a - \frac{\pi}{2} \right)} + \frac{3}{8}$$
1 1 3
------- + ------- + ---------------
6 6 2 2
csc (a) sec (a) csc (a)*sec (a)
$$\frac{1}{\sec^{6}{\left(a \right)}} + \frac{3}{\csc^{2}{\left(a \right)} \sec^{2}{\left(a \right)}} + \frac{1}{\csc^{6}{\left(a \right)}}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ || |
|| | || | || | || 6 |
3*|< 2 |*|< 2 | + |< 6 | + | 2/a\\ 12/a\ |
||sin (a) otherwise | ||cos (a) otherwise | ||sin (a) otherwise | |||-1 + cot |-|| *sin |-| otherwise |
\\ / \\ / \\ / ||\ \2// \2/ |
\\ /
$$\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{6}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{6} \sin^{12}{\left(\frac{a}{2} \right)} & \text{otherwise} \end{cases}\right)$$
6 2
/ 2/a\\ 12/a\ 12/a\ 6/a\ / 2/a\\ 8/a\ 2/a\
|1 - tan |-|| *cos |-| + 64*cos |-|*tan |-| + 12*|1 - tan |-|| *cos |-|*tan |-|
\ \2// \2/ \2/ \2/ \ \2// \2/ \2/
$$\left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{6} \cos^{12}{\left(\frac{a}{2} \right)} + 12 \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{2} \cos^{8}{\left(\frac{a}{2} \right)} \tan^{2}{\left(\frac{a}{2} \right)} + 64 \cos^{12}{\left(\frac{a}{2} \right)} \tan^{6}{\left(\frac{a}{2} \right)}$$
3 6 6 3
- + cos (a) + sin (a) - ----------
8 8*sec(4*a)
$$\sin^{6}{\left(a \right)} + \cos^{6}{\left(a \right)} + \frac{3}{8} - \frac{3}{8 \sec{\left(4 a \right)}}$$
/pi \
3*sin|-- + 4*a|
3 6 6 \2 /
- + cos (a) + sin (a) - ---------------
8 8
$$\sin^{6}{\left(a \right)} - \frac{3 \sin{\left(4 a + \frac{\pi}{2} \right)}}{8} + \cos^{6}{\left(a \right)} + \frac{3}{8}$$
// / a \\ // / a \\ // / a \\
|| 1 for And|im(a) = 0, - mod 2*pi = 0|| || 1 for And|im(a) = 0, - mod 2*pi = 0|| || 1 for And|im(a) = 0, - mod 2*pi = 0||
6 || \ 2 /| || \ 2 /| 2 || \ 2 /|
/ 2/a\\ || | 6/a\ || | / 2/a\\ 2/a\ || |
|1 - tan |-|| *|< 12 | + 64*tan |-|*|< 12 | + 12*|1 - tan |-|| *tan |-|*|< 8 |
\ \2// ||/ 2/a\\ 24/a\ | \2/ ||/ 2/a\\ 24/a\ | \ \2// \2/ ||/ 2/a\\ 16/a\ |
|||-1 + cot |-|| *sin |-| otherwise | |||-1 + cot |-|| *sin |-| otherwise | |||-1 + cot |-|| *sin |-| otherwise |
||\ \4// \4/ | ||\ \4// \4/ | ||\ \4// \4/ |
\\ / \\ / \\ /
$$\left(\left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{6} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \frac{a}{2} \bmod 2 \pi = 0 \\\left(\cot^{2}{\left(\frac{a}{4} \right)} - 1\right)^{12} \sin^{24}{\left(\frac{a}{4} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(12 \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \frac{a}{2} \bmod 2 \pi = 0 \\\left(\cot^{2}{\left(\frac{a}{4} \right)} - 1\right)^{8} \sin^{16}{\left(\frac{a}{4} \right)} & \text{otherwise} \end{cases}\right) \tan^{2}{\left(\frac{a}{2} \right)}\right) + \left(64 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \frac{a}{2} \bmod 2 \pi = 0 \\\left(\cot^{2}{\left(\frac{a}{4} \right)} - 1\right)^{12} \sin^{24}{\left(\frac{a}{4} \right)} & \text{otherwise} \end{cases}\right) \tan^{6}{\left(\frac{a}{2} \right)}\right)$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ || 6 |
|| | || | || | ||/ 2 \ |
3*|< 2 |*|< 2 | + |< 6 | + |<| sin (a) | 12/a\ |
||sin (a) otherwise | ||cos (a) otherwise | ||sin (a) otherwise | |||-1 + ---------| *sin |-| otherwise |
\\ / \\ / \\ / ||| 4/a\| \2/ |
||| 4*sin |-|| |
\\\ \2// /
$$\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{6}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\left(-1 + \frac{\sin^{2}{\left(a \right)}}{4 \sin^{4}{\left(\frac{a}{2} \right)}}\right)^{6} \sin^{12}{\left(\frac{a}{2} \right)} & \text{otherwise} \end{cases}\right)$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ || 6 12/a\ |
|| | || | || | ||64*cos (a)*sin |-| |
3*|< 2 |*|< 2 | + |< 6 | + |< \2/ |
||sin (a) otherwise | ||cos (a) otherwise | ||sin (a) otherwise | ||------------------- otherwise |
\\ / \\ / \\ / || 6 |
|| (-1 + cos(a)) |
\\ /
$$\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{6}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{64 \sin^{12}{\left(\frac{a}{2} \right)} \cos^{6}{\left(a \right)}}{\left(\cos{\left(a \right)} - 1\right)^{6}} & \text{otherwise} \end{cases}\right)$$
6 12/a\
64*cos (a)*cos |-|
3*(1 - cos(4*a)) 6/a\ 6/a\ \2/
---------------- + 64*cos |-|*sin |-| + -------------------
8 \2/ \2/ 6
(1 + cos(a))
$$\frac{3 \cdot \left(1 - \cos{\left(4 a \right)}\right)}{8} + 64 \sin^{6}{\left(\frac{a}{2} \right)} \cos^{6}{\left(\frac{a}{2} \right)} + \frac{64 \cos^{12}{\left(\frac{a}{2} \right)} \cos^{6}{\left(a \right)}}{\left(\cos{\left(a \right)} + 1\right)^{6}}$$
1 1 3
------- + ------------ + --------------------
6 6/ pi\ 2 2/ pi\
sec (a) sec |a - --| sec (a)*sec |a - --|
\ 2 / \ 2 /
$$\frac{1}{\sec^{6}{\left(a - \frac{\pi}{2} \right)}} + \frac{3}{\sec^{2}{\left(a \right)} \sec^{2}{\left(a - \frac{\pi}{2} \right)}} + \frac{1}{\sec^{6}{\left(a \right)}}$$
6 2
/ 2/pi a\\ / 2/pi a\\
| csc |-- - -|| | csc |-- - -||
| \2 2/| | \2 2/|
|1 - ------------| 12*|1 - ------------|
| 2/a\ | | 2/a\ |
| csc |-| | | csc |-| |
\ \2/ / 64 \ \2/ /
------------------- + -------------------- + ----------------------
12/pi a\ 6/a\ 6/pi a\ 2/a\ 6/pi a\
csc |-- - -| csc |-|*csc |-- - -| csc |-|*csc |-- - -|
\2 2/ \2/ \2 2/ \2/ \2 2/
$$\frac{\left(1 - \frac{\csc^{2}{\left(- \frac{a}{2} + \frac{\pi}{2} \right)}}{\csc^{2}{\left(\frac{a}{2} \right)}}\right)^{6}}{\csc^{12}{\left(- \frac{a}{2} + \frac{\pi}{2} \right)}} + \frac{12 \left(1 - \frac{\csc^{2}{\left(- \frac{a}{2} + \frac{\pi}{2} \right)}}{\csc^{2}{\left(\frac{a}{2} \right)}}\right)^{2}}{\csc^{2}{\left(\frac{a}{2} \right)} \csc^{6}{\left(- \frac{a}{2} + \frac{\pi}{2} \right)}} + \frac{64}{\csc^{6}{\left(\frac{a}{2} \right)} \csc^{6}{\left(- \frac{a}{2} + \frac{\pi}{2} \right)}}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ || 6 |
|| | || | || | || / 1 \ 24/a\ 12/a\ |
3*|< 2 |*|< 2 | + |< 6 | + |<4096*|-1 + -------| *cos |-|*tan |-| otherwise |
||sin (a) otherwise | ||cos (a) otherwise | ||sin (a) otherwise | || | 2/a\| \4/ \4/ |
\\ / \\ / \\ / || | tan |-|| |
|| \ \2// |
\\ /
$$\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{6}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\4096 \left(-1 + \frac{1}{\tan^{2}{\left(\frac{a}{2} \right)}}\right)^{6} \cos^{24}{\left(\frac{a}{4} \right)} \tan^{12}{\left(\frac{a}{4} \right)} & \text{otherwise} \end{cases}\right)$$
/pi \
3*sin|-- + 4*a|
3 6 6/ pi\ \2 /
- + sin (a) + sin |a + --| - ---------------
8 \ 2 / 8
$$\sin^{6}{\left(a \right)} + \sin^{6}{\left(a + \frac{\pi}{2} \right)} - \frac{3 \sin{\left(4 a + \frac{\pi}{2} \right)}}{8} + \frac{3}{8}$$
6 6/a\ 6/a\
1 - sin (a) + 64*cos |-|*sin |-|
\2/ \2/
$$64 \sin^{6}{\left(\frac{a}{2} \right)} \cos^{6}{\left(\frac{a}{2} \right)} - \sin^{6}{\left(a \right)} + 1$$
3 6 6 3
- + cos (a) + sin (a) - ---------------
8 /pi \
8*csc|-- - 4*a|
\2 /
$$\sin^{6}{\left(a \right)} + \cos^{6}{\left(a \right)} + \frac{3}{8} - \frac{3}{8 \csc{\left(- 4 a + \frac{\pi}{2} \right)}}$$
// / a \\ // / a \\
|| 1 for And|im(a) = 0, - mod 2*pi = 0|| || 1 for And|im(a) = 0, - mod 2*pi = 0||
|| \ 2 /| || \ 2 /|
|| | || |
|| 12 | 2 || 8 |
||/ 2/a\\ | / 1 \ ||/ 2/a\\ |
64*|<|-1 + cot |-|| | 12*|1 - -------| *|<|-1 + cot |-|| |
// / a \\ ||\ \4// | | 2/a\| ||\ \4// |
|| 1 for And|im(a) = 0, - mod 2*pi = 0|| ||---------------- otherwise | | cot |-|| ||--------------- otherwise |
|| \ 2 /| || 12 | \ \2// || 8 |
|| | ||/ 2/a\\ | || / 2/a\\ |
6 || 12 | |||1 + cot |-|| | || |1 + cot |-|| |
/ 1 \ ||/ 2/a\\ | \\\ \4// / \\ \ \4// /
|1 - -------| *|<|-1 + cot |-|| | + ---------------------------------------------------------- + ------------------------------------------------------------------------
| 2/a\| ||\ \4// | 6/a\ 2/a\
| cot |-|| ||---------------- otherwise | cot |-| cot |-|
\ \2// || 12 | \2/ \2/
||/ 2/a\\ |
|||1 + cot |-|| |
\\\ \4// /
$$\left(\left(1 - \frac{1}{\cot^{2}{\left(\frac{a}{2} \right)}}\right)^{6} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \frac{a}{2} \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{4} \right)} - 1\right)^{12}}{\left(\cot^{2}{\left(\frac{a}{4} \right)} + 1\right)^{12}} & \text{otherwise} \end{cases}\right)\right) + \left(\frac{12 \left(1 - \frac{1}{\cot^{2}{\left(\frac{a}{2} \right)}}\right)^{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \frac{a}{2} \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{4} \right)} - 1\right)^{8}}{\left(\cot^{2}{\left(\frac{a}{4} \right)} + 1\right)^{8}} & \text{otherwise} \end{cases}\right)}{\cot^{2}{\left(\frac{a}{2} \right)}}\right) + \left(\frac{64 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \frac{a}{2} \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{4} \right)} - 1\right)^{12}}{\left(\cot^{2}{\left(\frac{a}{4} \right)} + 1\right)^{12}} & \text{otherwise} \end{cases}\right)}{\cot^{6}{\left(\frac{a}{2} \right)}}\right)$$
6 2
/ 2/a\\ 12/a\ 6/a\ 6/a\ / 2/a\\ 6/a\ 2/a\
|1 - tan |-|| *cos |-| + 64*cos |-|*sin |-| + 12*|1 - tan |-|| *cos |-|*sin |-|
\ \2// \2/ \2/ \2/ \ \2// \2/ \2/
$$\left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{6} \cos^{12}{\left(\frac{a}{2} \right)} + 12 \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{2} \sin^{2}{\left(\frac{a}{2} \right)} \cos^{6}{\left(\frac{a}{2} \right)} + 64 \sin^{6}{\left(\frac{a}{2} \right)} \cos^{6}{\left(\frac{a}{2} \right)}$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || | || | || |
|| 2/a\ | || 2 | || 6/a\ | || 6 |
|| 4*cot |-| | ||/ 2/a\\ | || 64*cot |-| | ||/ 2/a\\ |
|| \2/ | |||-1 + cot |-|| | || \2/ | |||-1 + cot |-|| |
3*|<-------------- otherwise |*|<\ \2// | + |<-------------- otherwise | + |<\ \2// |
|| 2 | ||--------------- otherwise | || 6 | ||--------------- otherwise |
||/ 2/a\\ | || 2 | ||/ 2/a\\ | || 6 |
|||1 + cot |-|| | || / 2/a\\ | |||1 + cot |-|| | || / 2/a\\ |
||\ \2// | || |1 + cot |-|| | ||\ \2// | || |1 + cot |-|| |
\\ / \\ \ \2// / \\ / \\ \ \2// /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{64 \cot^{6}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{6}} & \text{otherwise} \end{cases}\right) + \left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{6}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{6}} & \text{otherwise} \end{cases}\right)$$
3 1 1 3
- + ------- + ------------ - ----------
8 6 6/ pi\ 8*sec(4*a)
sec (a) sec |a - --|
\ 2 /
$$\frac{3}{8} + \frac{1}{\sec^{6}{\left(a - \frac{\pi}{2} \right)}} - \frac{3}{8 \sec{\left(4 a \right)}} + \frac{1}{\sec^{6}{\left(a \right)}}$$
6 2 / 2 \
3 / 2/a\\ 12/a\ 12/a\ 6/a\ 3*cos (2*a)*\1 - tan (2*a)/
- + |1 - tan |-|| *cos |-| + 64*cos |-|*tan |-| - ---------------------------
8 \ \2// \2/ \2/ \2/ 8
$$\left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{6} \cos^{12}{\left(\frac{a}{2} \right)} - \frac{3 \cdot \left(1 - \tan^{2}{\left(2 a \right)}\right) \cos^{2}{\left(2 a \right)}}{8} + 64 \cos^{12}{\left(\frac{a}{2} \right)} \tan^{6}{\left(\frac{a}{2} \right)} + \frac{3}{8}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ || |
|| | || | || | || 6 |
3*|< 2 |*|< 2 | + |< 6 | + | 2/a\\ 12/a\ |
||sin (a) otherwise | ||cos (a) otherwise | ||sin (a) otherwise | |||1 - tan |-|| *cos |-| otherwise |
\\ / \\ / \\ / ||\ \2// \2/ |
\\ /
$$\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{6}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{6} \cos^{12}{\left(\frac{a}{2} \right)} & \text{otherwise} \end{cases}\right)$$
3 6 6 3*cos(4*a)
- + cos (a) + sin (a) - ----------
8 8
$$\sin^{6}{\left(a \right)} + \cos^{6}{\left(a \right)} - \frac{3 \cos{\left(4 a \right)}}{8} + \frac{3}{8}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
|| 6 |
||/ 2/a\ \ |
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ ||| csc |-| | |
|| | || | || | ||| \2/ | |
|| 1 | || 1 | || 1 | |||-1 + ------------| |
3*|<------- otherwise |*|<------------ otherwise | + |<------- otherwise | + |<| 2/pi a\| |
|| 2 | || 2/pi \ | || 6 | ||| csc |-- - -|| |
||csc (a) | ||csc |-- - a| | ||csc (a) | ||\ \2 2// |
\\ / \\ \2 / / \\ / ||-------------------- otherwise |
|| 12/a\ |
|| csc |-| |
|| \2/ |
\\ /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc^{6}{\left(a \right)}} & \text{otherwise} \end{cases}\right) + \left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc^{2}{\left(a \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\csc^{2}{\left(- a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(\frac{\csc^{2}{\left(\frac{a}{2} \right)}}{\csc^{2}{\left(- \frac{a}{2} + \frac{\pi}{2} \right)}} - 1\right)^{6}}{\csc^{12}{\left(\frac{a}{2} \right)}} & \text{otherwise} \end{cases}\right)$$
6 6/ pi\ 2 2/ pi\
cos (a) + cos |a - --| + 3*cos (a)*cos |a - --|
\ 2 / \ 2 /
$$\cos^{6}{\left(a \right)} + 3 \cos^{2}{\left(a \right)} \cos^{2}{\left(a - \frac{\pi}{2} \right)} + \cos^{6}{\left(a - \frac{\pi}{2} \right)}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ || |
|| | || | || | || // / a \\ |
||/ 0 for And(im(a) = 0, a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod 2*pi = 0) | ||/ 0 for And(im(a) = 0, a mod pi = 0) | || 6 || 0 for And|im(a) = 0, - mod pi = 0|| |
3*|<| |*|<| | + |<| | + | 2/a\\ || \ 2 /| |
||< 2 otherwise | ||< 2 otherwise | ||< 6 otherwise | |||-1 + cot |-|| *|< | otherwise |
|||sin (a) otherwise | |||cos (a) otherwise | |||sin (a) otherwise | ||\ \2// || 12/a\ 24/a\ | |
\\\ / \\\ / \\\ / || ||4096*cot |-|*sin |-| otherwise | |
\\ \\ \4/ \4/ / /
$$\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{6}{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{6} \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \frac{a}{2} \bmod \pi = 0 \\4096 \sin^{24}{\left(\frac{a}{4} \right)} \cot^{12}{\left(\frac{a}{4} \right)} & \text{otherwise} \end{cases}\right) & \text{otherwise} \end{cases}\right)$$
6 12 12 2 8
/ 2/a\\ / 2/a\\ 24/a\ / 2/a\\ 24/a\ 6/a\ / 2/a\\ / 2/a\\ 16/a\ 2/a\
|1 - tan |-|| *|1 - tan |-|| *cos |-| + 64*|1 - tan |-|| *cos |-|*tan |-| + 12*|1 - tan |-|| *|1 - tan |-|| *cos |-|*tan |-|
\ \2// \ \4// \4/ \ \4// \4/ \2/ \ \2// \ \4// \4/ \2/
$$\left(1 - \tan^{2}{\left(\frac{a}{4} \right)}\right)^{12} \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{6} \cos^{24}{\left(\frac{a}{4} \right)} + 64 \left(1 - \tan^{2}{\left(\frac{a}{4} \right)}\right)^{12} \cos^{24}{\left(\frac{a}{4} \right)} \tan^{6}{\left(\frac{a}{2} \right)} + 12 \left(1 - \tan^{2}{\left(\frac{a}{4} \right)}\right)^{8} \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{2} \cos^{16}{\left(\frac{a}{4} \right)} \tan^{2}{\left(\frac{a}{2} \right)}$$
6 2
/ 2/a\\ 6/a\ / 2/a\\ 2/a\
|1 - tan |-|| 64*tan |-| 12*|1 - tan |-|| *tan |-|
\ \2// \2/ \ \2// \2/
-------------- + -------------- + -------------------------
6 6 4
/ 2/a\\ / 2/a\\ / 2/a\\
|1 + tan |-|| |1 + tan |-|| |1 + tan |-||
\ \2// \ \2// \ \2//
$$\frac{\left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{6}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{6}} + \frac{12 \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{2} \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{4}} + \frac{64 \tan^{6}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{6}}$$
6 6 3*(1 - cos(4*a))
cos (a) + sin (a) + ----------------
8
$$\frac{3 \cdot \left(1 - \cos{\left(4 a \right)}\right)}{8} + \sin^{6}{\left(a \right)} + \cos^{6}{\left(a \right)}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
// 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\ || 6 |
|| | || | || | ||/ 2 \ |
3*|< 2 |*|< 2/ pi\ | + |< 6 | + |<| sin (a) | 12/a\ |
||sin (a) otherwise | ||sin |a + --| otherwise | ||sin (a) otherwise | |||-1 + ---------| *sin |-| otherwise |
\\ / \\ \ 2 / / \\ / ||| 4/a\| \2/ |
||| 4*sin |-|| |
\\\ \2// /
$$\left(3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\sin^{2}{\left(a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{6}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\left(-1 + \frac{\sin^{2}{\left(a \right)}}{4 \sin^{4}{\left(\frac{a}{2} \right)}}\right)^{6} \sin^{12}{\left(\frac{a}{2} \right)} & \text{otherwise} \end{cases}\right)$$