Подстановка условия
[src]sin(pi/4 + a) - sin(pi/4 - a) при a = 1/2
sin(pi/4 + a) - sin(pi/4 - a)
$$- \sin{\left (- a + \frac{\pi}{4} \right )} + \sin{\left (a + \frac{\pi}{4} \right )}$$
sin(pi/4 + (1/2)) - sin(pi/4 - (1/2))
$$- \sin{\left (- (1/2) + \frac{\pi}{4} \right )} + \sin{\left ((1/2) + \frac{\pi}{4} \right )}$$
sin(pi/4 + 1/2) - sin(pi/4 - 1/2)
$$- \sin{\left (- \frac{1}{2} + \frac{\pi}{4} \right )} + \sin{\left (\frac{1}{2} + \frac{\pi}{4} \right )}$$
-cos(1/2 + pi/4) + sin(1/2 + pi/4)
$$- \cos{\left (\frac{1}{2} + \frac{\pi}{4} \right )} + \sin{\left (\frac{1}{2} + \frac{\pi}{4} \right )}$$
/ pi\ / pi\
- cos|a + --| + sin|a + --|
\ 4 / \ 4 /
$$\sin{\left (a + \frac{\pi}{4} \right )} - \cos{\left (a + \frac{\pi}{4} \right )}$$
-sin(pi/4 - a) + sin(pi/4 + a)
Рациональный знаменатель
[src] / pi\ / pi\
- cos|a + --| + sin|a + --|
\ 4 / \ 4 /
$$\sin{\left (a + \frac{\pi}{4} \right )} - \cos{\left (a + \frac{\pi}{4} \right )}$$
Объединение рациональных выражений
[src] /pi - 4*a\ /pi + 4*a\
- sin|--------| + sin|--------|
\ 4 / \ 4 /
$$- \sin{\left (\frac{1}{4} \left(- 4 a + \pi\right) \right )} + \sin{\left (\frac{1}{4} \left(4 a + \pi\right) \right )}$$
$$\sqrt{2} \sin{\left (a \right )}$$
/ pi\ / pi\
- cos|a + --| + sin|a + --|
\ 4 / \ 4 /
$$\sin{\left (a + \frac{\pi}{4} \right )} - \cos{\left (a + \frac{\pi}{4} \right )}$$
/ pi\ / pi\
- cos|a + --| + sin|a + --|
\ 4 / \ 4 /
$$\sin{\left (a + \frac{\pi}{4} \right )} - \cos{\left (a + \frac{\pi}{4} \right )}$$
Тригонометрическая часть
[src]$$\sqrt{2} \sin{\left (a \right )}$$
/ pi\ / pi\
- cos|a + --| + sin|a + --|
\ 4 / \ 4 /
$$\sin{\left (a + \frac{\pi}{4} \right )} - \cos{\left (a + \frac{\pi}{4} \right )}$$
$$\sqrt{2} \sin{\left (a \right )}$$