Тригонометрическая часть
[src] 1 csc(t)
------------- + ----------------------
/pi \ /pi \
4*csc|-- - t| 4*csc(3*t)*csc|-- - t|
\2 / \2 /
$$\frac{\csc{\left(t \right)}}{4 \csc{\left(3 t \right)} \csc{\left(- t + \frac{\pi}{2} \right)}} + \frac{1}{4 \csc{\left(- t + \frac{\pi}{2} \right)}}$$
/ 1 for And(im(t) = 0, t mod 2*pi = 0) // 0 for And(im(t) = 0, 3*t mod pi = 0)\
< |< |*cot(t)
\cos(t) otherwise \\sin(3*t) otherwise /
------------------------------------------- + ------------------------------------------------------
4 4
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge 3 t \bmod \pi = 0 \\\sin{\left(3 t \right)} & \text{otherwise} \end{cases}\right) \cot{\left(t \right)}}{4}\right) + \left(\frac{\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\cos{\left(t \right)} & \text{otherwise} \end{cases}}{4}\right)$$
3
/ 2/t\\
|1 - tan |-||
\ \2//
--------------
3
/ 2/t\\
|1 + tan |-||
\ \2//
$$\frac{\left(1 - \tan^{2}{\left(\frac{t}{2} \right)}\right)^{3}}{\left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right)^{3}}$$
$$\frac{1}{\sec^{3}{\left(t \right)}}$$
// 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
|| |
// 0 for And(im(t) = 0, (-t) mod pi = 0)\ // 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ || 1 |
|| | || | ||-1 + ------- |
|| 2 | || 2/t\ | || 2/t\ |
||-------------------- otherwise | ||-1 + cot |-| | || cot |-| |
-| 1 \ /t\ |*|< \2/ |*|< \2/ |*cot(t)
|||1 + -------|*cot|-| | ||------------ otherwise | ||------------ otherwise |
||| 2/t\| \2/ | || 2/t\ | || 1 |
||| cot |-|| | ||1 + cot |-| | ||1 + ------- |
\\\ \2// / \\ \2/ / || 2/t\ |
|| cot |-| |
\\ \2/ /
$$- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\frac{2}{\left(1 + \frac{1}{\cot^{2}{\left(\frac{t}{2} \right)}}\right) \cot{\left(\frac{t}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{t}{2} \right)} - 1}{\cot^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\\frac{-1 + \frac{1}{\cot^{2}{\left(\frac{t}{2} \right)}}}{1 + \frac{1}{\cot^{2}{\left(\frac{t}{2} \right)}}} & \text{otherwise} \end{cases}\right) \cot{\left(t \right)}$$
/ pi\
sin|t + --|
\ 2 / sin(2*t)*sin(3*t)
----------- + -----------------
4 2
8*sin (t)
$$\frac{\sin{\left(t + \frac{\pi}{2} \right)}}{4} + \frac{\sin{\left(2 t \right)} \sin{\left(3 t \right)}}{8 \sin^{2}{\left(t \right)}}$$
// 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ // 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
// 0 for And(im(t) = 0, (-t) mod pi = 0)\ || | || |
-|< |*|< / pi\ |*|< / pi\ |*sin(2*t)
\\sin(t) otherwise / ||sin|t + --| otherwise | ||-sin|t + --| otherwise |
\\ \ 2 / / \\ \ 2 / /
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2
2*sin (t)
$$- \frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\sin{\left(t \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\sin{\left(t + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\- \sin{\left(t + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \sin{\left(2 t \right)}}{2 \sin^{2}{\left(t \right)}}$$
// 0 for And(im(t) = 0, (-t) mod pi = 0)\ // 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ // 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
|| | || | || |
-| 0 for And(im(t) = 0, t mod pi = 0) |*| 1 for And(im(t) = 0, t mod 2*pi = 0) |*|< // 1 for And(im(t) = 0, t mod 2*pi = 0)\ |*cot(t)
||< otherwise | ||< otherwise | ||-|< | otherwise |
\\\sin(t) otherwise / \\\cos(t) otherwise / \\ \\cos(t) otherwise / /
$$- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\sin{\left(t \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\cos{\left(t \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\cos{\left(t \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \cot{\left(t \right)}$$
// 0 for And(im(t) = 0, (-t) mod pi = 0)\ // 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ // 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
-|< |*|< |*|< |*cot(t)
\\sin(t) otherwise / \\cos(t) otherwise / \\-cos(t) otherwise /
$$- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\sin{\left(t \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\cos{\left(t \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\- \cos{\left(t \right)} & \text{otherwise} \end{cases}\right) \cot{\left(t \right)}$$
/ 1 for And(im(t) = 0, t mod 2*pi = 0)
|
| 3
2/t\\ 6/t\
||-1 + cot |-|| *sin |-| otherwise
|\ \2// \2/
\
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\left(\cot^{2}{\left(\frac{t}{2} \right)} - 1\right)^{3} \sin^{6}{\left(\frac{t}{2} \right)} & \text{otherwise} \end{cases}$$
2 2
2 / /t\\ / /t\\
(1 + cos(t)) *|1 + tan|-|| *|-1 + tan|-|| *cos(t)
\ \2// \ \2//
-------------------------------------------------
4
$$\frac{\left(\cos{\left(t \right)} + 1\right)^{2} \left(\tan{\left(\frac{t}{2} \right)} - 1\right)^{2} \left(\tan{\left(\frac{t}{2} \right)} + 1\right)^{2} \cos{\left(t \right)}}{4}$$
/ 1 \ / 2/t\\
-2*|1 - -------|*|1 - tan |-||
| 2/t\| \ \2//
| tan |-||
\ \2//
------------------------------------------
2
/ 1 \ / 2/t\\ /t\
|1 + -------| *|1 + tan |-||*tan(t)*tan|-|
| 2/t\| \ \2// \2/
| tan |-||
\ \2//
$$- \frac{2 \cdot \left(1 - \frac{1}{\tan^{2}{\left(\frac{t}{2} \right)}}\right) \left(1 - \tan^{2}{\left(\frac{t}{2} \right)}\right)}{\left(1 + \frac{1}{\tan^{2}{\left(\frac{t}{2} \right)}}\right)^{2} \left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right) \tan{\left(\frac{t}{2} \right)} \tan{\left(t \right)}}$$
// 0 for And(im(t) = 0, (-t) mod pi = 0)\
|| | // 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ // 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
|| 1 | || | || | / pi\
-|<----------- otherwise |*|< 1 |*|< -1 |*sec|t - --|
|| / pi\ | ||------ otherwise | ||------ otherwise | \ 2 /
||sec|t - --| | \\sec(t) / \\sec(t) /
\\ \ 2 / /
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
sec(t)
$$- \frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\frac{1}{\sec{\left(t - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(t \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\- \frac{1}{\sec{\left(t \right)}} & \text{otherwise} \end{cases}\right) \sec{\left(t - \frac{\pi}{2} \right)}}{\sec{\left(t \right)}}$$
/ 3*pi\ / 5*pi\
-sin(2*t)*sin|-t + ----|*sin|-t + ----|
\ 2 / \ 2 /
----------------------------------------
2*sin(t)
$$- \frac{\sin{\left(2 t \right)} \sin{\left(- t + \frac{3 \pi}{2} \right)} \sin{\left(- t + \frac{5 \pi}{2} \right)}}{2 \sin{\left(t \right)}}$$
/ 2/t\\ / 2/t\\ /t\
-2*|1 - cot |-||*|1 - tan |-||*cot|-|
\ \2// \ \2// \2/
-------------------------------------
2
/ 2/t\\ / 2/t\\
|1 + cot |-|| *|1 + tan |-||*tan(t)
\ \2// \ \2//
$$- \frac{2 \cdot \left(1 - \tan^{2}{\left(\frac{t}{2} \right)}\right) \left(1 - \cot^{2}{\left(\frac{t}{2} \right)}\right) \cot{\left(\frac{t}{2} \right)}}{\left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right) \left(\cot^{2}{\left(\frac{t}{2} \right)} + 1\right)^{2} \tan{\left(t \right)}}$$
2
cos (t)*sin(2*t)
----------------
2*sin(t)
$$\frac{\sin{\left(2 t \right)} \cos^{2}{\left(t \right)}}{2 \sin{\left(t \right)}}$$
// 0 for And(im(t) = 0, (-t) mod pi = 0)\ // 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ // 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
|| | || | || |
|| /t\ | || 2/t\ | || / 2/t\\ |
|| 2*tan|-| | ||1 - tan |-| | ||-|1 - tan |-|| |
-|< \2/ |*|< \2/ |*|< \ \2// |
||----------- otherwise | ||----------- otherwise | ||--------------- otherwise |
|| 2/t\ | || 2/t\ | || 2/t\ |
||1 + tan |-| | ||1 + tan |-| | || 1 + tan |-| |
\\ \2/ / \\ \2/ / \\ \2/ /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
tan(t)
$$- \frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{t}{2} \right)}}{\tan^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{t}{2} \right)}}{\tan^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\- \frac{1 - \tan^{2}{\left(\frac{t}{2} \right)}}{\tan^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)}{\tan{\left(t \right)}}$$
// 0 for And(im(t) = 0, (-t) mod pi = 0)\
|| | // 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ // 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
-|< / pi\ |*|< |*|< |*cos(t)
||cos|t - --| otherwise | \\cos(t) otherwise / \\-cos(t) otherwise /
\\ \ 2 / /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
/ pi\
cos|t - --|
\ 2 /
$$- \frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\cos{\left(t - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\cos{\left(t \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\- \cos{\left(t \right)} & \text{otherwise} \end{cases}\right) \cos{\left(t \right)}}{\cos{\left(t - \frac{\pi}{2} \right)}}$$
// 0 for And(im(t) = 0, (-t) mod pi = 0)\ // 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ // 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
|| | || | || |
|| /t\ | || 2/t\ | || 2/t\ |
|| 2*tan|-| | ||-1 + cot |-| | ||-1 + tan |-| |
-|< \2/ |*|< \2/ |*|< \2/ |*cot(t)
||----------- otherwise | ||------------ otherwise | ||------------ otherwise |
|| 2/t\ | || 2/t\ | || 2/t\ |
||1 + tan |-| | ||1 + cot |-| | ||1 + tan |-| |
\\ \2/ / \\ \2/ / \\ \2/ /
$$- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{t}{2} \right)}}{\tan^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{t}{2} \right)} - 1}{\cot^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\\frac{\tan^{2}{\left(\frac{t}{2} \right)} - 1}{\tan^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \cot{\left(t \right)}$$
/ pi\
sec|t - --|
\ 2 /
-------------------
3 /pi \
sec (t)*sec|-- - t|
\2 /
$$\frac{\sec{\left(t - \frac{\pi}{2} \right)}}{\sec^{3}{\left(t \right)} \sec{\left(- t + \frac{\pi}{2} \right)}}$$
2/t\ /3*t\
1 - tan |-| tan|---|
\2/ \ 2 /
--------------- + ------------------------
/ 2/t\\ / 2/3*t\\
4*|1 + tan |-|| 2*|1 + tan |---||*tan(t)
\ \2// \ \ 2 //
$$\frac{1 - \tan^{2}{\left(\frac{t}{2} \right)}}{4 \left(\tan^{2}{\left(\frac{t}{2} \right)} + 1\right)} + \frac{\tan{\left(\frac{3 t}{2} \right)}}{2 \left(\tan^{2}{\left(\frac{3 t}{2} \right)} + 1\right) \tan{\left(t \right)}}$$
/ pi\
cos(t)*cos|3*t - --|
cos(t) \ 2 /
------ + --------------------
4 / pi\
4*cos|t - --|
\ 2 /
$$\frac{\cos{\left(t \right)}}{4} + \frac{\cos{\left(t \right)} \cos{\left(3 t - \frac{\pi}{2} \right)}}{4 \cos{\left(t - \frac{\pi}{2} \right)}}$$
/ 1 for And(im(t) = 0, t mod 2*pi = 0)
|
| 3
|/ 2/t\\
||-1 + cot |-||
<\ \2//
|--------------- otherwise
| 3
| / 2/t\\
| |1 + cot |-||
\ \ \2//
$$\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{t}{2} \right)} - 1\right)^{3}}{\left(\cot^{2}{\left(\frac{t}{2} \right)} + 1\right)^{3}} & \text{otherwise} \end{cases}$$
// 0 for And(im(t) = 0, (-t) mod pi = 0)\ // 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ // 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
|| | || | || |
||/ 0 for And(im(t) = 0, t mod pi = 0) | ||/ 1 for And(im(t) = 0, t mod 2*pi = 0) | || // 1 for And(im(t) = 0, t mod 2*pi = 0)\ |
||| | ||| | || || | |
||| /t\ | ||| 2/t\ | || || 2/t\ | |
-|<| 2*cot|-| |*|<|-1 + cot |-| |*|< ||-1 + cot |-| | |*cot(t)
||< \2/ otherwise | ||< \2/ otherwise | ||-|< \2/ | otherwise |
|||----------- otherwise | |||------------ otherwise | || ||------------ otherwise | |
||| 2/t\ | ||| 2/t\ | || || 2/t\ | |
|||1 + cot |-| | |||1 + cot |-| | || ||1 + cot |-| | |
\\\ \2/ / \\\ \2/ / \\ \\ \2/ / /
$$- \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{t}{2} \right)}}{\cot^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{t}{2} \right)} - 1}{\cot^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{t}{2} \right)} - 1}{\cot^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \cot{\left(t \right)}$$
cos(t) sin(3*t)
------ + --------
4 4*tan(t)
$$\frac{\sin{\left(3 t \right)}}{4 \tan{\left(t \right)}} + \frac{\cos{\left(t \right)}}{4}$$
// 0 for And(im(t) = 0, (-t) mod pi = 0)\ // 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ // 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
-|< |*|< |*|< |
\\sin(t) otherwise / \\cos(t) otherwise / \\-cos(t) otherwise /
-------------------------------------------------------------------------------------------------------------------------------------------------------
tan(t)
$$- \frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\sin{\left(t \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\cos{\left(t \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\- \cos{\left(t \right)} & \text{otherwise} \end{cases}\right)}{\tan{\left(t \right)}}$$
// 1 for And(im(t) = 0, (-t) mod 2*pi = 0)\ // 1 for And(im(t) = 0, (pi - t) mod 2*pi = 0)\
// 0 for And(im(t) = 0, (-t) mod pi = 0)\ || | || |
|| | || 1 | || -1 |
-|< 1 |*|<----------- otherwise |*|<----------- otherwise |*csc(t)
||------ otherwise | || /pi \ | || /pi \ |
\\csc(t) / ||csc|-- - t| | ||csc|-- - t| |
\\ \2 / / \\ \2 / /
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
/pi \
csc|-- - t|
\2 /
$$- \frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod \pi = 0 \\\frac{1}{\csc{\left(t \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge - t \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- t + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge \left(\pi - t\right) \bmod 2 \pi = 0 \\- \frac{1}{\csc{\left(- t + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \csc{\left(t \right)}}{\csc{\left(- t + \frac{\pi}{2} \right)}}$$
$$\cos^{3}{\left(t \right)}$$
1
------------
3/pi \
csc |-- - t|
\2 /
$$\frac{1}{\csc^{3}{\left(- t + \frac{\pi}{2} \right)}}$$
3
/ 2/t\\ 6/t\
|1 - tan |-|| *cos |-|
\ \2// \2/
$$\left(1 - \tan^{2}{\left(\frac{t}{2} \right)}\right)^{3} \cos^{6}{\left(\frac{t}{2} \right)}$$
/ 1 for And(im(t) = 0, t mod 2*pi = 0) // 0 for And(im(t) = 0, 3*t mod pi = 0)\
| || |
| 2/t\ || /3*t\ |
|-1 + cot |-| || 2*cot|---| |
< \2/ |< \ 2 / |*cot(t)
|------------ otherwise ||------------- otherwise |
| 2/t\ || 2/3*t\ |
|1 + cot |-| ||1 + cot |---| |
\ \2/ \\ \ 2 / /
------------------------------------------------- + -----------------------------------------------------------
4 4
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge 3 t \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 t}{2} \right)}}{\cot^{2}{\left(\frac{3 t}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \cot{\left(t \right)}}{4}\right) + \left(\frac{\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(t\right)} = 0 \wedge t \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{t}{2} \right)} - 1}{\cot^{2}{\left(\frac{t}{2} \right)} + 1} & \text{otherwise} \end{cases}}{4}\right)$$
3/ pi\
sin |t + --|
\ 2 /
$$\sin^{3}{\left(t + \frac{\pi}{2} \right)}$$
/ pi\
sec|t - --|
1 \ 2 /
-------- + ----------------------
4*sec(t) / pi\
4*sec(t)*sec|3*t - --|
\ 2 /
$$\frac{\sec{\left(t - \frac{\pi}{2} \right)}}{4 \sec{\left(t \right)} \sec{\left(3 t - \frac{\pi}{2} \right)}} + \frac{1}{4 \sec{\left(t \right)}}$$