Подстановка условия
[src]sin(2*x)/cos(x) + 2 при x = -4
$$\frac{\sin{\left (2 x \right )}}{\cos{\left (x \right )}} + 2$$
sin(2*(-4))/cos((-4)) + 2
$$\frac{\sin{\left (2 (-4) \right )}}{\cos{\left ((-4) \right )}} + 2$$
$$\frac{\sin{\left (-4 \cdot 2 \right )}}{\cos{\left (-4 \right )}} + 2$$
$$- \frac{\sin{\left (8 \right )}}{\cos{\left (4 \right )}} + 2$$
Рациональный знаменатель
[src]2*cos(x) + sin(2*x)
-------------------
cos(x)
$$\frac{1}{\cos{\left (x \right )}} \left(\sin{\left (2 x \right )} + 2 \cos{\left (x \right )}\right)$$
Объединение рациональных выражений
[src]2*cos(x) + sin(2*x)
-------------------
cos(x)
$$\frac{1}{\cos{\left (x \right )}} \left(\sin{\left (2 x \right )} + 2 \cos{\left (x \right )}\right)$$
$$2 \sin{\left (x \right )} + 2$$
$$\sin{\left (2 x \right )} \sec{\left (x \right )} + 2$$
2*cos(x) + sin(2*x)
-------------------
cos(x)
$$\frac{1}{\cos{\left (x \right )}} \left(\sin{\left (2 x \right )} + 2 \cos{\left (x \right )}\right)$$
Тригонометрическая часть
[src]$$2 \sin{\left (x \right )} + 2$$
$$2 \sin{\left (x \right )} + 2$$