Подстановка условия
[src]sin((n + 1)*x)/(2*(n + 1)) + sin((1 - n)*x)/(2*(1 - n)) при x = -1/3
sin((n + 1)*x)/(2*(n + 1)) + sin((1 - n)*x)/(2*(1 - n))
$$\frac{\sin{\left (x \left(n + 1\right) \right )}}{2 \left(n + 1\right)} + \frac{\sin{\left (x \left(- n + 1\right) \right )}}{2 \left(- n + 1\right)}$$
sin((n + 1)*(-1/3))/(2*(n + 1)) + sin((1 - n)*(-1/3))/(2*(1 - n))
$$\frac{\sin{\left ((-1/3) \left(n + 1\right) \right )}}{2 \left(n + 1\right)} + \frac{\sin{\left ((-1/3) \left(- n + 1\right) \right )}}{2 \left(- n + 1\right)}$$
sin((n + 1)*(-1)/3)/(2*(n + 1)) + sin((1 - n)*(-1)/3)/(2*(1 - n))
$$\frac{\sin{\left (\frac{1}{3} \left(- n - 1\right) \right )}}{2 \left(n + 1\right)} + \frac{\sin{\left (\frac{1}{3} \left(n - 1\right) \right )}}{2 \left(- n + 1\right)}$$
sin(-1/3 + n/3)/(2 - 2*n) - sin(1/3 + n/3)/(2 + 2*n)
$$- \frac{\sin{\left (\frac{n}{3} + \frac{1}{3} \right )}}{2 n + 2} + \frac{\sin{\left (\frac{n}{3} - \frac{1}{3} \right )}}{- 2 n + 2}$$
sin(x*(1 - n)) sin(x*(1 + n))
-------------- + --------------
2 - 2*n 2 + 2*n
$$\frac{\sin{\left (x \left(n + 1\right) \right )}}{2 n + 2} + \frac{\sin{\left (x \left(- n + 1\right) \right )}}{- 2 n + 2}$$
sin((n + 1)*x)/(2.0 + 2.0*n) + sin((1 - n)*x)/(2.0 - 2.0*n)
Рациональный знаменатель
[src]-2*sin(x + n*x) + 2*sin(-x + n*x) + 2*n*sin(x + n*x) + 2*n*sin(-x + n*x)
------------------------------------------------------------------------
(-2 + 2*n)*(2 + 2*n)
$$\frac{1}{\left(2 n - 2\right) \left(2 n + 2\right)} \left(2 n \sin{\left (n x - x \right )} + 2 n \sin{\left (n x + x \right )} + 2 \sin{\left (n x - x \right )} - 2 \sin{\left (n x + x \right )}\right)$$
Объединение рациональных выражений
[src](1 + n)*sin(x*(1 - n)) + (1 - n)*sin(x*(1 + n))
-----------------------------------------------
2*(1 + n)*(1 - n)
$$\frac{1}{2 \left(- n + 1\right) \left(n + 1\right)} \left(\left(- n + 1\right) \sin{\left (x \left(n + 1\right) \right )} + \left(n + 1\right) \sin{\left (x \left(- n + 1\right) \right )}\right)$$
(1 + n)*sin(x*(-1 + n)) + (-1 + n)*sin(x*(1 + n))
-------------------------------------------------
2*(1 + n)*(-1 + n)
$$\frac{1}{2 \left(n - 1\right) \left(n + 1\right)} \left(\left(n - 1\right) \sin{\left (x \left(n + 1\right) \right )} + \left(n + 1\right) \sin{\left (x \left(n - 1\right) \right )}\right)$$
sin(-x + n*x) sin(x + n*x)
------------- + ------------
-2 + 2*n 2 + 2*n
$$\frac{\sin{\left (n x + x \right )}}{2 n + 2} + \frac{\sin{\left (n x - x \right )}}{2 n - 2}$$
-sin(x + n*x) + n*sin(x + n*x) + n*sin(-x + n*x) + sin(-x + n*x)
----------------------------------------------------------------
2
-2 + 2*n
$$\frac{1}{2 n^{2} - 2} \left(n \sin{\left (n x - x \right )} + n \sin{\left (n x + x \right )} + \sin{\left (n x - x \right )} - \sin{\left (n x + x \right )}\right)$$
Тригонометрическая часть
[src] 1 1
---------*sin((1 - n)*x) + ---------*sin((n + 1)*x)
2*(1 - n) 2*(n + 1)
$$\frac{1}{- 2 n + 2} \sin{\left (x \left(- n + 1\right) \right )} + \frac{1}{2 n + 2} \sin{\left (x \left(n + 1\right) \right )}$$
-sin(x + n*x) + n*sin(x + n*x) + n*sin(-x + n*x) + sin(-x + n*x)
----------------------------------------------------------------
2*(1 + n)*(-1 + n)
$$\frac{1}{2 \left(n - 1\right) \left(n + 1\right)} \left(n \sin{\left (n x - x \right )} + n \sin{\left (n x + x \right )} + \sin{\left (n x - x \right )} - \sin{\left (n x + x \right )}\right)$$
sin((1 - n)*x) sin((n + 1)*x)
-------------- + --------------
2*(1 - n) 2*(n + 1)
$$\frac{\sin{\left (x \left(n + 1\right) \right )}}{2 n + 2} + \frac{\sin{\left (x \left(- n + 1\right) \right )}}{- 2 n + 2}$$
sin(x*(1 - n)) sin(x*(1 + n))
-------------- + --------------
2 - 2*n 2 + 2*n
$$\frac{\sin{\left (x \left(n + 1\right) \right )}}{2 n + 2} + \frac{\sin{\left (x \left(- n + 1\right) \right )}}{- 2 n + 2}$$