Найти значение выражения sin((n+1)*x)/(2*(n+1))+sin((1-n)*x)/(2*(1-n)) если x=-1/3 (синус от ((n плюс 1) умножить на х) делить на (2 умножить на (n плюс 1)) плюс синус от ((1 минус n) умножить на х) делить на (2 умножить на (1 минус n)) если х равно минус 1 делить на 3) [Есть ответ!]

sin((n+1)*x)/(2*(n+1))+si ... *x)/(2*(1-n)) если x=-1/3 (упростите выражение)

Учитель очень удивится увидев твоё верное решение😉

Выражение, которое надо упростить:

Решение

Вы ввели [src]
sin((n + 1)*x)   sin((1 - n)*x)
-------------- + --------------
  2*(n + 1)        2*(1 - n)   
$$\frac{\sin{\left (x \left(n + 1\right) \right )}}{2 \left(n + 1\right)} + \frac{\sin{\left (x \left(- n + 1\right) \right )}}{2 \left(- n + 1\right)}$$
Подстановка условия [src]
sin((n + 1)*x)/(2*(n + 1)) + sin((1 - n)*x)/(2*(1 - n)) при x = -1/3
sin((n + 1)*x)/(2*(n + 1)) + sin((1 - n)*x)/(2*(1 - n))
$$\frac{\sin{\left (x \left(n + 1\right) \right )}}{2 \left(n + 1\right)} + \frac{\sin{\left (x \left(- n + 1\right) \right )}}{2 \left(- n + 1\right)}$$
sin((n + 1)*(-1/3))/(2*(n + 1)) + sin((1 - n)*(-1/3))/(2*(1 - n))
$$\frac{\sin{\left ((-1/3) \left(n + 1\right) \right )}}{2 \left(n + 1\right)} + \frac{\sin{\left ((-1/3) \left(- n + 1\right) \right )}}{2 \left(- n + 1\right)}$$
sin((n + 1)*(-1)/3)/(2*(n + 1)) + sin((1 - n)*(-1)/3)/(2*(1 - n))
$$\frac{\sin{\left (\frac{1}{3} \left(- n - 1\right) \right )}}{2 \left(n + 1\right)} + \frac{\sin{\left (\frac{1}{3} \left(n - 1\right) \right )}}{2 \left(- n + 1\right)}$$
sin(-1/3 + n/3)/(2 - 2*n) - sin(1/3 + n/3)/(2 + 2*n)
$$- \frac{\sin{\left (\frac{n}{3} + \frac{1}{3} \right )}}{2 n + 2} + \frac{\sin{\left (\frac{n}{3} - \frac{1}{3} \right )}}{- 2 n + 2}$$
Степени [src]
sin(x*(1 - n))   sin(x*(1 + n))
-------------- + --------------
   2 - 2*n          2 + 2*n    
$$\frac{\sin{\left (x \left(n + 1\right) \right )}}{2 n + 2} + \frac{\sin{\left (x \left(- n + 1\right) \right )}}{- 2 n + 2}$$
Численный ответ [src]
sin((n + 1)*x)/(2.0 + 2.0*n) + sin((1 - n)*x)/(2.0 - 2.0*n)
Рациональный знаменатель [src]
-2*sin(x + n*x) + 2*sin(-x + n*x) + 2*n*sin(x + n*x) + 2*n*sin(-x + n*x)
------------------------------------------------------------------------
                          (-2 + 2*n)*(2 + 2*n)                          
$$\frac{1}{\left(2 n - 2\right) \left(2 n + 2\right)} \left(2 n \sin{\left (n x - x \right )} + 2 n \sin{\left (n x + x \right )} + 2 \sin{\left (n x - x \right )} - 2 \sin{\left (n x + x \right )}\right)$$
Объединение рациональных выражений [src]
(1 + n)*sin(x*(1 - n)) + (1 - n)*sin(x*(1 + n))
-----------------------------------------------
               2*(1 + n)*(1 - n)               
$$\frac{1}{2 \left(- n + 1\right) \left(n + 1\right)} \left(\left(- n + 1\right) \sin{\left (x \left(n + 1\right) \right )} + \left(n + 1\right) \sin{\left (x \left(- n + 1\right) \right )}\right)$$
Общее упрощение [src]
(1 + n)*sin(x*(-1 + n)) + (-1 + n)*sin(x*(1 + n))
-------------------------------------------------
                2*(1 + n)*(-1 + n)               
$$\frac{1}{2 \left(n - 1\right) \left(n + 1\right)} \left(\left(n - 1\right) \sin{\left (x \left(n + 1\right) \right )} + \left(n + 1\right) \sin{\left (x \left(n - 1\right) \right )}\right)$$
Собрать выражение [src]
sin(-x + n*x)   sin(x + n*x)
------------- + ------------
   -2 + 2*n       2 + 2*n   
$$\frac{\sin{\left (n x + x \right )}}{2 n + 2} + \frac{\sin{\left (n x - x \right )}}{2 n - 2}$$
Общий знаменатель [src]
-sin(x + n*x) + n*sin(x + n*x) + n*sin(-x + n*x) + sin(-x + n*x)
----------------------------------------------------------------
                                   2                            
                           -2 + 2*n                             
$$\frac{1}{2 n^{2} - 2} \left(n \sin{\left (n x - x \right )} + n \sin{\left (n x + x \right )} + \sin{\left (n x - x \right )} - \sin{\left (n x + x \right )}\right)$$
Тригонометрическая часть [src]
    1                          1                   
---------*sin((1 - n)*x) + ---------*sin((n + 1)*x)
2*(1 - n)                  2*(n + 1)               
$$\frac{1}{- 2 n + 2} \sin{\left (x \left(- n + 1\right) \right )} + \frac{1}{2 n + 2} \sin{\left (x \left(n + 1\right) \right )}$$
Комбинаторика [src]
-sin(x + n*x) + n*sin(x + n*x) + n*sin(-x + n*x) + sin(-x + n*x)
----------------------------------------------------------------
                       2*(1 + n)*(-1 + n)                       
$$\frac{1}{2 \left(n - 1\right) \left(n + 1\right)} \left(n \sin{\left (n x - x \right )} + n \sin{\left (n x + x \right )} + \sin{\left (n x - x \right )} - \sin{\left (n x + x \right )}\right)$$
Раскрыть выражение [src]
sin((1 - n)*x)   sin((n + 1)*x)
-------------- + --------------
  2*(1 - n)        2*(n + 1)   
$$\frac{\sin{\left (x \left(n + 1\right) \right )}}{2 n + 2} + \frac{\sin{\left (x \left(- n + 1\right) \right )}}{- 2 n + 2}$$
sin(x*(1 - n))   sin(x*(1 + n))
-------------- + --------------
   2 - 2*n          2 + 2*n    
$$\frac{\sin{\left (x \left(n + 1\right) \right )}}{2 n + 2} + \frac{\sin{\left (x \left(- n + 1\right) \right )}}{- 2 n + 2}$$