Подстановка условия
[src]sin(p - a)*sin(p + a) при a = -1/3
$$\sin{\left (- a + p \right )} \sin{\left (a + p \right )}$$
sin(p - (-1/3))*sin(p + (-1/3))
$$\sin{\left (- (-1/3) + p \right )} \sin{\left ((-1/3) + p \right )}$$
sin(p - (-1)/3)*sin(p - 1/3)
$$\sin{\left (p - \frac{1}{3} \right )} \sin{\left (p - - \frac{1}{3} \right )}$$
sin(-1/3 + p)*sin(1/3 + p)
$$\sin{\left (p - \frac{1}{3} \right )} \sin{\left (p + \frac{1}{3} \right )}$$
$$- \sin{\left (a - p \right )} \sin{\left (a + p \right )}$$
Рациональный знаменатель
[src]$$- \sin{\left (a - p \right )} \sin{\left (a + p \right )}$$
Объединение рациональных выражений
[src]$$- \sin{\left (a - p \right )} \sin{\left (a + p \right )}$$
$$- \sin{\left (a - p \right )} \sin{\left (a + p \right )}$$
cos(2*a) cos(2*p)
-------- - --------
2 2
$$\frac{1}{2} \cos{\left (2 a \right )} - \frac{1}{2} \cos{\left (2 p \right )}$$
$$- \sin{\left (a - p \right )} \sin{\left (a + p \right )}$$
(cos(a)*sin(p) + cos(p)*sin(a))*(cos(a)*sin(p) - cos(p)*sin(a))
$$\left(- \sin{\left (a \right )} \cos{\left (p \right )} + \sin{\left (p \right )} \cos{\left (a \right )}\right) \left(\sin{\left (a \right )} \cos{\left (p \right )} + \sin{\left (p \right )} \cos{\left (a \right )}\right)$$