Тригонометрическая часть
[src] // / /pi \ \\
|| 0 for And|im(a) = 0, |-- - a| mod pi = 0||
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || \ \2 / /|
- |< | + |< |
\\-cos(a) otherwise / || /a pi\ |
||-(1 + sin(a))*cot|- + --| otherwise |
\\ \2 4 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \left(\sin{\left(a \right)} + 1\right) \cot{\left(\frac{a}{2} + \frac{\pi}{4} \right)} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \cos{\left(a \right)} & \text{otherwise} \end{cases}\right)$$
// / a \\
|| 1 for And|im(a) = 0, - mod 2*pi = 0||
|| \ 2 /| // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| 2 | || 2/a\ |
||/ 2/a\\ | ||-1 + cot |-| |
1 - 2*|<|-1 + cot |-|| | + |< \2/ |
||\ \4// | ||------------ otherwise |
||--------------- otherwise | || 2/a\ |
|| 2 | ||1 + cot |-| |
|| / 2/a\\ | \\ \2/ /
|| |1 + cot |-|| |
\\ \ \4// /
$$\left(- 2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \frac{a}{2} \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{4} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{a}{4} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) + 1$$
2/pi a\ / pi\
1 - 2*sin |-- + -| + sin|a + --|
\2 2/ \ 2 /
$$- 2 \sin^{2}{\left(\frac{a}{2} + \frac{\pi}{2} \right)} + \sin{\left(a + \frac{\pi}{2} \right)} + 1$$
2/a\
1 - 2*cos |-| + cos(a)
\2/
$$- 2 \cos^{2}{\left(\frac{a}{2} \right)} + \cos{\left(a \right)} + 1$$
1 2
1 + ------ - -------
sec(a) 2/a\
sec |-|
\2/
$$1 + \frac{1}{\sec{\left(a \right)}} - \frac{2}{\sec^{2}{\left(\frac{a}{2} \right)}}$$
// / /pi \ \\
|| 0 for And|im(a) = 0, |-- - a| mod pi = 0||
|| \ \2 / /|
|| |
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || / / pi\\ /a pi\ |
- |< | + |<-|1 + cos|a - --||*cos|- + --| |
\\-cos(a) otherwise / || \ \ 2 // \2 4 / |
||------------------------------- otherwise |
|| /a pi\ |
|| cos|- - --| |
\\ \2 4 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{\left(\cos{\left(a - \frac{\pi}{2} \right)} + 1\right) \cos{\left(\frac{a}{2} + \frac{\pi}{4} \right)}}{\cos{\left(\frac{a}{2} - \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \cos{\left(a \right)} & \text{otherwise} \end{cases}\right)$$
2/a\ /a pi\
1 - cot |-| 2*tan|- + --|
\2/ \2 4 /
- ----------- - ----------------
2/a\ 2/a pi\
1 + cot |-| 1 + tan |- + --|
\2/ \2 4 /
$$- \frac{1 - \cot^{2}{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} - \frac{2 \tan{\left(\frac{a}{2} + \frac{\pi}{4} \right)}}{\tan^{2}{\left(\frac{a}{2} + \frac{\pi}{4} \right)} + 1}$$
// / /pi \ \\
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || 0 for And|im(a) = 0, |-- - a| mod pi = 0||
- |< | + |< \ \2 / /|
\\-cos(a) otherwise / || |
\\-cos(a) otherwise /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \cos{\left(a \right)} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \cos{\left(a \right)} & \text{otherwise} \end{cases}\right)$$
1
1 - -------
2/a\ /a pi\
tan |-| 2*tan|- + --|
\2/ \2 4 /
- ----------- - ----------------
1 2/a pi\
1 + ------- 1 + tan |- + --|
2/a\ \2 4 /
tan |-|
\2/
$$- \frac{1 - \frac{1}{\tan^{2}{\left(\frac{a}{2} \right)}}}{1 + \frac{1}{\tan^{2}{\left(\frac{a}{2} \right)}}} - \frac{2 \tan{\left(\frac{a}{2} + \frac{\pi}{4} \right)}}{\tan^{2}{\left(\frac{a}{2} + \frac{\pi}{4} \right)} + 1}$$
2
2/a\ / 2/a\\
1 - tan |-| 2*|1 - tan |-||
\2/ \ \4//
1 + ----------- - ----------------
2/a\ 2
1 + tan |-| / 2/a\\
\2/ |1 + tan |-||
\ \4//
$$- \frac{2 \left(1 - \tan^{2}{\left(\frac{a}{4} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{a}{4} \right)} + 1\right)^{2}} + \frac{1 - \tan^{2}{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} + 1$$
// / /pi \ \\
|| 0 for And|im(a) = 0, |-- - a| mod pi = 0||
|| \ \2 / /|
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || |
|| | || / /a\ \ |
|| / 2/a\\ | || | 2*tan|-| | |
||-|1 - tan |-|| | || | \2/ | |
- |< \ \2// | + |<-|1 + -----------| |
||--------------- otherwise | || | 2/a\| |
|| 2/a\ | || | 1 + tan |-|| |
|| 1 + tan |-| | || \ \2// |
\\ \2/ / ||------------------- otherwise |
|| /a pi\ |
|| tan|- + --| |
\\ \2 4 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{1 + \frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1}}{\tan{\left(\frac{a}{2} + \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \frac{1 - \tan^{2}{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)$$
// / /pi \ \\
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || 0 for And|im(a) = 0, |-- - a| mod pi = 0||
|| | || \ \2 / /|
|| 2/a\ | || |
||-1 + tan |-| | || /a pi\ |
- |< \2/ | + |< -2*cot|- + --| |
||------------ otherwise | || \2 4 / |
|| 2/a\ | ||---------------- otherwise |
||1 + tan |-| | || 2/a pi\ |
\\ \2/ / ||1 + cot |- + --| |
\\ \2 4 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2 \cot{\left(\frac{a}{2} + \frac{\pi}{4} \right)}}{\cot^{2}{\left(\frac{a}{2} + \frac{\pi}{4} \right)} + 1} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\\frac{\tan^{2}{\left(\frac{a}{2} \right)} - 1}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)$$
$$\cos{\left(a \right)} + \cos{\left(\pi - a \right)}$$
1 1
------ - -----------
sec(a) /pi \
csc|-- - a|
\2 /
$$\frac{1}{\sec{\left(a \right)}} - \frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}}$$
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\
|| | // / /pi \ \\
|| 1 | || 0 for And|im(a) = 0, |-- - a| mod pi = 0||
||-1 + ------- | || \ \2 / /|
|| 2/a\ | || |
|| cot |-| | || /a pi\ |
- |< \2/ | + |< -2*cot|- + --| |
||------------ otherwise | || \2 4 / |
|| 1 | ||---------------- otherwise |
||1 + ------- | || 2/a pi\ |
|| 2/a\ | ||1 + cot |- + --| |
|| cot |-| | \\ \2 4 / /
\\ \2/ /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{2 \cot{\left(\frac{a}{2} + \frac{\pi}{4} \right)}}{\cot^{2}{\left(\frac{a}{2} + \frac{\pi}{4} \right)} + 1} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\\frac{-1 + \frac{1}{\cot^{2}{\left(\frac{a}{2} \right)}}}{1 + \frac{1}{\cot^{2}{\left(\frac{a}{2} \right)}}} & \text{otherwise} \end{cases}\right)$$
1 2
1 + ----------- - ------------
/pi \ 2/pi a\
csc|-- - a| csc |-- - -|
\2 / \2 2/
$$1 - \frac{2}{\csc^{2}{\left(- \frac{a}{2} + \frac{\pi}{2} \right)}} + \frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}}$$
/ pi\
- sin|a + --| + cos(a)
\ 2 /
$$- \sin{\left(a + \frac{\pi}{2} \right)} + \cos{\left(a \right)}$$
// / /pi \ \\
|| 0 for And|im(a) = 0, |-- - a| mod pi = 0||
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || \ \2 / /|
|| | || |
|| -1 | || / 1 \ /a pi\ |
- |<----------- otherwise | + |<-|1 + ------|*csc|- + --| |
|| /pi \ | || \ csc(a)/ \2 4 / |
||csc|-- - a| | ||-------------------------- otherwise |
\\ \2 / / || / a pi\ |
|| csc|- - + --| |
\\ \ 2 4 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{\left(1 + \frac{1}{\csc{\left(a \right)}}\right) \csc{\left(\frac{a}{2} + \frac{\pi}{4} \right)}}{\csc{\left(- \frac{a}{2} + \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)$$
/ 3*pi\
-cos(a) - sin|a + ----|
\ 2 /
$$- \sin{\left(a + \frac{3 \pi}{2} \right)} - \cos{\left(a \right)}$$
1 1
----------- - ------
/pi \ sec(a)
csc|-- - a|
\2 /
$$- \frac{1}{\sec{\left(a \right)}} + \frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}}$$
// / a \\
|| 1 for And|im(a) = 0, - mod 2*pi = 0||
|| \ 2 /| // 1 for And(im(a) = 0, a mod 2*pi = 0)\
1 - 2*|< | + |< |
||1 + cos(a) | \\cos(a) otherwise /
||---------- otherwise |
\\ 2 /
$$\left(- 2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \frac{a}{2} \bmod 2 \pi = 0 \\\frac{\cos{\left(a \right)} + 1}{2} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right) + 1$$
// / /pi \ \\
|| 0 for And|im(a) = 0, |-- - a| mod pi = 0||
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || \ \2 / /|
|| | || |
- |< / pi\ | + |<-(1 + sin(a))*cos(a) |
||-sin|a + --| otherwise | ||--------------------- otherwise |
\\ \ 2 / / || 2/a pi\ |
|| 2*sin |- + --| |
\\ \2 4 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{\left(\sin{\left(a \right)} + 1\right) \cos{\left(a \right)}}{2 \sin^{2}{\left(\frac{a}{2} + \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \sin{\left(a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)$$
// / /pi \ \\
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || 0 for And|im(a) = 0, |-- - a| mod pi = 0||
|| | || \ \2 / /|
|| // 1 for And(im(a) = 0, a mod 2*pi = 0)\ | || |
|| || | | || / // 0 for And(im(a) = 0, a mod pi = 0)\\ |
|| || 2/a\ | | || | || || |
- |< ||-1 + cot |-| | | + |< | || /a\ || |
||-|< \2/ | otherwise | || | || 2*cot|-| || /a pi\ |
|| ||------------ otherwise | | ||-|1 + |< \2/ ||*cot|- + --| otherwise |
|| || 2/a\ | | || | ||----------- otherwise || \2 4 / |
|| ||1 + cot |-| | | || | || 2/a\ || |
\\ \\ \2/ / / || | ||1 + cot |-| || |
\\ \ \\ \2/ // /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) + 1\right) \cot{\left(\frac{a}{2} + \frac{\pi}{4} \right)} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)$$
// / /pi \ \\
|| 0 for And|im(a) = 0, |-- - a| mod pi = 0||
|| \ \2 / /|
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || |
- |< | + |<-(1 + sin(a)) |
\\-cos(a) otherwise / ||-------------- otherwise |
|| /a pi\ |
|| tan|- + --| |
\\ \2 4 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{\sin{\left(a \right)} + 1}{\tan{\left(\frac{a}{2} + \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \cos{\left(a \right)} & \text{otherwise} \end{cases}\right)$$
// / /pi \ \\
|| 0 for And|im(a) = 0, |-- - a| mod pi = 0||
|| \ \2 / /|
|| |
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || / 1 \ /a pi\ |
|| | ||-|1 + -----------|*sec|- - --| |
- |< -1 | + |< | / pi\| \2 4 / |
||------ otherwise | || | sec|a - --|| |
\\sec(a) / || \ \ 2 // |
||------------------------------- otherwise |
|| /a pi\ |
|| sec|- + --| |
\\ \2 4 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{\left(1 + \frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}}\right) \sec{\left(\frac{a}{2} - \frac{\pi}{4} \right)}}{\sec{\left(\frac{a}{2} + \frac{\pi}{4} \right)}} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \frac{1}{\sec{\left(a \right)}} & \text{otherwise} \end{cases}\right)$$
// / /pi \ \\
|| 0 for And|im(a) = 0, |-- - a| mod pi = 0||
|| \ \2 / /|
|| |
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || / /a\\ |
- |< | + |<-|1 - tan|-||*(1 + sin(a)) |
\\-cos(a) otherwise / || \ \2// |
||--------------------------- otherwise |
|| /a\ |
|| 1 + tan|-| |
\\ \2/ /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \frac{\left(1 - \tan{\left(\frac{a}{2} \right)}\right) \left(\sin{\left(a \right)} + 1\right)}{\tan{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \cos{\left(a \right)} & \text{otherwise} \end{cases}\right)$$
// / /pi \ \\
// 1 for And(im(a) = 0, (pi + a) mod 2*pi = 0)\ || 0 for And|im(a) = 0, |-- - a| mod pi = 0||
|| | || \ \2 / /|
- |< // 1 for And(im(a) = 0, a mod 2*pi = 0)\ | + |< |
||-|< | otherwise | || / // 0 for And(im(a) = 0, a mod pi = 0)\\ /a pi\ |
\\ \\cos(a) otherwise / / ||-|1 + |< ||*cot|- + --| otherwise |
\\ \ \\sin(a) otherwise // \2 4 / /
$$\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(- a + \frac{\pi}{2}\right) \bmod \pi = 0 \\- \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) + 1\right) \cot{\left(\frac{a}{2} + \frac{\pi}{4} \right)} & \text{otherwise} \end{cases}\right) - \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge \left(a + \pi\right) \bmod 2 \pi = 0 \\- \begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)$$
1 1
------ + -----------
sec(a) sec(pi - a)
$$\frac{1}{\sec{\left(\pi - a \right)}} + \frac{1}{\sec{\left(a \right)}}$$