Подстановка условия
[src](3*x^3)*y + 6*x^2 + (3*x)*y^3 при y = 1/4
(3*x^3)*y + 6*x^2 + (3*x)*y^3
$$3 x y^{3} + 6 x^{2} + 3 x^{3} y$$
(3*x^3)*(1/4) + 6*x^2 + (3*x)*(1/4)^3
$$(1/4)^{3} \cdot 3 x + (1/4) 3 x^{3} + 6 x^{2}$$
(3*x^3)/4 + 6*x^2 + (3*x)*(1/4)^3
$$\frac{3 x}{64} + 6 x^{2} + \frac{3 x^{3}}{4}$$
$$\frac{3 x^{3}}{4} + 6 x^{2} + \frac{3 x}{64}$$
2 3 3
6*x + 3*x*y + 3*y*x
$$3 x^{3} y + 6 x^{2} + 3 x y^{3}$$
6.0*x^2 + 3.0*x*y^3 + 3.0*y*x^3
Рациональный знаменатель
[src] 2 3 3
6*x + 3*x*y + 3*y*x
$$3 x^{3} y + 6 x^{2} + 3 x y^{3}$$
Объединение рациональных выражений
[src] / 3 \
3*x*\y + x*(2 + x*y)/
$$3 x \left(x \left(x y + 2\right) + y^{3}\right)$$
/ 3 2\
3*x*\y + 2*x + y*x /
$$3 x \left(x^{2} y + 2 x + y^{3}\right)$$
2 3 3
6*x + 3*x*y + 3*x *y
$$6 x^{2} + 3 x y^{3} + 3 x^{3} y$$
2 3 3
6*x + 3*x *y + 3*x*y
$$6 x^{2} + 3 x y^{3} + 3 x^{3} y$$
2 3 3
6*x + 3*x*y + 3*y*x
$$3 x^{3} y + 6 x^{2} + 3 x y^{3}$$
/ 3 2\
3*x*\y + 2*x + y*x /
$$3 x \left(x^{2} y + 2 x + y^{3}\right)$$