Подстановка условия
[src](8*a)/a2 - b2 + 3/b - a - 4/a + b при a = -1/2
(8*a)/a2 - b2 + 3/b - a - 4/a + b
$$b + - a + \frac{8 a}{a_{2}} - b_{2} + \frac{3}{b} - \frac{4}{a}$$
(8*(-1/2))/a2 - b2 + 3/b - (-1/2) - 4/(-1/2) + b
$$b + - (-1/2) + \frac{8 (-1/2)}{a_{2}} - b_{2} + \frac{3}{b} - \frac{4}{(-1/2)}$$
(8*(-1)/2)/a2 - b2 + 3/b - (-1)/2 - 4/(-1/2) + b
$$b + - b_{2} + \frac{-4}{a_{2}} 1 + \frac{3}{b} - - \frac{1}{2} - -8$$
17/2 + b - b2 - 4/a2 + 3/b
$$b - b_{2} + \frac{17}{2} + \frac{3}{b} - \frac{4}{a_{2}}$$
4 3 8*a
b - a - b2 - - + - + ---
a b a2
$$- a + \frac{8 a}{a_{2}} + b - b_{2} + \frac{3}{b} - \frac{4}{a}$$
b - a - b2 + 3.0/b - 4.0/a + 8.0*a/a2
Рациональный знаменатель
[src] 2
a*(3*a2 + b*(8*a - a2*b2) - a*a2*b) - 4*a2*b + a*a2*b
------------------------------------------------------
a*a2*b
$$\frac{1}{a a_{2} b} \left(a a_{2} b^{2} + a \left(- a a_{2} b + 3 a_{2} + b \left(8 a - a_{2} b_{2}\right)\right) - 4 a_{2} b\right)$$
Объединение рациональных выражений
[src] 2
a*(3*a2 + b*(8*a - a2*b2) - a*a2*b) - 4*a2*b + a*a2*b
------------------------------------------------------
a*a2*b
$$\frac{1}{a a_{2} b} \left(a a_{2} b^{2} + a \left(- a a_{2} b + 3 a_{2} + b \left(8 a - a_{2} b_{2}\right)\right) - 4 a_{2} b\right)$$
4 3 8*a
b - a - b2 - - + - + ---
a b a2
$$- a + \frac{8 a}{a_{2}} + b - b_{2} + \frac{3}{b} - \frac{4}{a}$$
3 8*a 4
b - a - b2 + - + --- - -
b a2 a
$$- a + \frac{8 a}{a_{2}} + b - b_{2} + \frac{3}{b} - \frac{4}{a}$$
2
-4*a2*b + 3*a*a2 + 8*b*a
b - a - b2 + -------------------------
a*a2*b
$$- a + b - b_{2} + \frac{1}{a a_{2} b} \left(8 a^{2} b + 3 a a_{2} - 4 a_{2} b\right)$$
/ 2 2 2 \
-\- 8*b*a - 3*a*a2 + 4*a2*b + a2*b*a - a*a2*b + a*a2*b*b2/
--------------------------------------------------------------
a*a2*b
$$- \frac{1}{a a_{2} b} \left(a^{2} a_{2} b - 8 a^{2} b - a a_{2} b^{2} + a a_{2} b b_{2} - 3 a a_{2} + 4 a_{2} b\right)$$