Подстановка условия
[src](((x/(a*b + 1))*y)/(b*(c*b + 1)))/(1 - (x/(a*b + 1))*y/b*(c*b + 1)) при a = -3
(((x/(a*b + 1))*y)/(b*(c*b + 1)))/(1 - (x/(a*b + 1))*y/b*(c*b + 1))
$$\frac{\frac{1}{b \left(b c + 1\right)} y \frac{x}{a b + 1}}{1 - \frac{\frac{1}{b} x y \frac{1}{b c + 1}}{a b + 1}}$$
(((x/((-3)*b + 1))*y)/(b*(c*b + 1)))/(1 - (x/((-3)*b + 1))*y/b*(c*b + 1))
$$\frac{\frac{1}{b \left(b c + 1\right)} y \frac{x}{(-3) b + 1}}{1 - \frac{\frac{1}{b} x y \frac{1}{b c + 1}}{(-3) b + 1}}$$
(((x/(-3*b + 1))*y)/(b*(c*b + 1)))/(1 - (x/(-3*b + 1))*y/b*(c*b + 1))
$$\frac{\frac{1}{b \left(b c + 1\right)} y \frac{x}{- 3 b + 1}}{1 - \frac{\frac{1}{b} x y \frac{1}{b c + 1}}{- 3 b + 1}}$$
x*y/(b*(1 - 3*b)*(1 + b*c)*(1 - x*y/(b*(1 - 3*b)*(1 + b*c))))
$$\frac{x y}{b \left(1 - \frac{x y}{b \left(- 3 b + 1\right) \left(b c + 1\right)}\right) \left(- 3 b + 1\right) \left(b c + 1\right)}$$
x*y
-------------------------------------------------
/ x*y \
b*(1 + a*b)*(1 + b*c)*|1 - ---------------------|
\ b*(1 + a*b)*(1 + b*c)/
$$\frac{x y}{b \left(1 - \frac{x y}{b \left(a b + 1\right) \left(b c + 1\right)}\right) \left(a b + 1\right) \left(b c + 1\right)}$$
x*y/(b*(1.0 + a*b)*(1.0 + b*c)*(1.0 - x*y/(b*(1.0 + a*b)*(1.0 + b*c))))
Рациональный знаменатель
[src] x*y
------------------------------
2 2 3
b + a*b + c*b - x*y + a*c*b
$$\frac{x y}{a b^{3} c + a b^{2} + b^{2} c + b - x y}$$
Объединение рациональных выражений
[src] x*y
----------------------------
-x*y + b*(1 + a*b)*(1 + b*c)
$$\frac{x y}{b \left(a b + 1\right) \left(b c + 1\right) - x y}$$
x*y
----------------------------
-x*y + b*(1 + a*b)*(1 + b*c)
$$\frac{x y}{b \left(a b + 1\right) \left(b c + 1\right) - x y}$$
x*y
---------------------------------------
/ x \
| -------*y |
| a*b + 1 |
b*|1 - -----------|*(1 + a*b)*(1 + b*c)
\ b*(c*b + 1)/
$$\frac{x y}{b \left(1 - \frac{\frac{1}{b} x y \frac{1}{b c + 1}}{a b + 1}\right) \left(a b + 1\right) \left(b c + 1\right)}$$
x*y
---------------------------------------
/ x \
| -------*y |
| a*b + 1 |
b*|1 - -----------|*(1 + a*b)*(1 + c*b)
\ b*(c*b + 1)/
$$\frac{x y}{b \left(1 - \frac{\frac{1}{b} x y \frac{1}{b c + 1}}{a b + 1}\right) \left(a b + 1\right) \left(b c + 1\right)}$$
-x*y
-------------------------------
2 2 3
-b + x*y - a*b - c*b - a*c*b
$$- \frac{x y}{- a b^{3} c - a b^{2} - b^{2} c - b + x y}$$
2 2 3
b + a*b + c*b + a*c*b
-1 - -------------------------------
2 2 3
-b + x*y - a*b - c*b - a*c*b
$$- \frac{a b^{3} c + a b^{2} + b^{2} c + b}{- a b^{3} c - a b^{2} - b^{2} c - b + x y} - 1$$
x*y
-------------------------------------------------
/ x*y \
b*|1 - ---------------------|*(a*b + 1)*(c*b + 1)
\ b*(a*b + 1)*(c*b + 1)/
$$\frac{x y}{b \left(1 - \frac{x y}{b \left(a b + 1\right) \left(b c + 1\right)}\right) \left(a b + 1\right) \left(b c + 1\right)}$$