Подстановка условия
[src]((x + 3)*(x + 2))*(x + 1) - (x + 3)*(x + 1)*(x - 1) - x*(x - 1)*(x + 1) + (x*(x + 1))*(x - 3) + ((x + 1)*(x - 1))*(x - 1) - (x + 1)*(x + 2)*(x - 3) при x = -4
((x + 3)*(x + 2))*(x + 1) - (x + 3)*(x + 1)*(x - 1) - x*(x - 1)*(x + 1) + (x*(x + 1))*(x - 3) + ((x + 1)*(x - 1))*(x - 1) - (x + 1)*(x + 2)*(x - 3)
$$- \left(x - 3\right) \left(x + 1\right) \left(x + 2\right) + \left(x - 1\right) \left(x + 1\right) \left(x - 1\right) + x \left(x + 1\right) \left(x - 3\right) + - x \left(x - 1\right) \left(x + 1\right) + - \left(x - 1\right) \left(x + 1\right) \left(x + 3\right) + \left(x + 2\right) \left(x + 3\right) \left(x + 1\right)$$
(((-4) + 3)*((-4) + 2))*((-4) + 1) - ((-4) + 3)*((-4) + 1)*((-4) - 1) - (-4)*((-4) - 1)*((-4) + 1) + ((-4)*((-4) + 1))*((-4) - 3) + (((-4) + 1)*((-4) - 1))*((-4) - 1) - ((-4) + 1)*((-4) + 2)*((-4) - 3)
$$- \left((-4) - 3\right) \left((-4) + 1\right) \left((-4) + 2\right) + \left((-4) - 1\right) \left((-4) + 1\right) \left((-4) - 1\right) + (-4) \left((-4) + 1\right) \left((-4) - 3\right) + - (-4) \left((-4) - 1\right) \left((-4) + 1\right) + - \left((-4) - 1\right) \left((-4) + 1\right) \left((-4) + 3\right) + \left((-4) + 2\right) \left((-4) + 3\right) \left((-4) + 1\right)$$
((-4 + 3)*(-4 + 2))*(-4 + 1) - (-4 + 3)*(-4 + 1)*(-4 - 1) - (-4*(-4 - 1))*(-4 + 1) + (-4*(-4 + 1))*(-4 - 3) + ((-4 + 1)*(-4 - 1))*(-4 - 1) - (-4 + 1)*(-4 + 2)*(-4 - 3)
$$\left(-4 - 1\right) \left(-4 + 1\right) \left(-4 - 1\right) + \left(-4 - 3\right) \left(- 4 \left(-4 + 1\right)\right) + \left(-4 + 2\right) \left(-4 + 3\right) \left(-4 + 1\right) - \left(-4 - 1\right) \left(-4 + 1\right) \left(-4 + 3\right) - - 4 \left(-4 - 1\right) \left(-4 + 1\right) - \left(-4 - 3\right) \left(-4 + 1\right) \left(-4 + 2\right)$$
2
(-1 + x) *(1 + x) + x*(1 + x)*(-3 + x) + (1 + x)*(2 + x)*(3 + x) - x*(1 + x)*(-1 + x) - (1 + x)*(-1 + x)*(3 + x) - (1 + x)*(-3 + x)*(2 + x)
$$x \left(x - 3\right) \left(x + 1\right) - x \left(x - 1\right) \left(x + 1\right) - \left(x - 3\right) \left(x + 1\right) \left(x + 2\right) + \left(x - 1\right)^{2} \left(x + 1\right) - \left(x - 1\right) \left(x + 1\right) \left(x + 3\right) + \left(x + 1\right) \left(x + 2\right) \left(x + 3\right)$$
Рациональный знаменатель
[src] 2
(-1 + x) *(1 + x) + x*(1 + x)*(-3 + x) + (1 + x)*(2 + x)*(3 + x) - x*(1 + x)*(-1 + x) - (1 + x)*(-1 + x)*(3 + x) - (1 + x)*(-3 + x)*(2 + x)
$$x \left(x - 3\right) \left(x + 1\right) - x \left(x - 1\right) \left(x + 1\right) - \left(x - 3\right) \left(x + 1\right) \left(x + 2\right) + \left(x - 1\right)^{2} \left(x + 1\right) - \left(x - 1\right) \left(x + 1\right) \left(x + 3\right) + \left(x + 1\right) \left(x + 2\right) \left(x + 3\right)$$
Объединение рациональных выражений
[src] / 2 \
(1 + x)*\9 + (-1 + x) + 3*x + x*(-3 + x) - x*(-1 + x) - (-3 + x)*(2 + x)/
$$\left(x + 1\right) \left(x \left(x - 3\right) - x \left(x - 1\right) + 3 x - \left(x - 3\right) \left(x + 2\right) + \left(x - 1\right)^{2} + 9\right)$$
x*(x + 1)*(x - 3) + (x + 1)*(x - 1)*(x - 1) + (x + 3)*(x + 2)*(x + 1) - x*(x - 1)*(x + 1) - (x + 1)*(x + 2)*(x - 3) - (x + 3)*(x + 1)*(x - 1)
$$- x \left(x - 1\right) \left(x + 1\right) + x \left(x + 1\right) \left(x - 3\right) + \left(x - 1\right) \left(x + 1\right) \left(x - 1\right) - \left(x - 3\right) \left(x + 1\right) \left(x + 2\right) - \left(x - 1\right) \left(x + 1\right) \left(x + 3\right) + \left(x + 2\right) \left(x + 3\right) \left(x + 1\right)$$