Подстановка условия
[src](x^9 - 3*x^7 + 3*x^5 - 2*x^3 + x)^3 при x = 1/4
(x^9 - 3*x^7 + 3*x^5 - 2*x^3 + x)^3
$$\left(x + - 2 x^{3} + 3 x^{5} + x^{9} - 3 x^{7}\right)^{3}$$
((1/4)^9 - 3*(1/4)^7 + 3*(1/4)^5 - 2*(1/4)^3 + (1/4))^3
$$\left((1/4) + - 2 (1/4)^{3} + 3 (1/4)^{5} + (1/4)^{9} - 3 (1/4)^{7}\right)^{3}$$
((1/4)^9 - 3*(1/4)^7 + 3*(1/4)^5 - 2*(1/4)^3 + 1/4)^3
$$\left(- \frac{1}{32} + - \frac{3}{16384} + \left(\frac{1}{4}\right)^{9} + \frac{3}{1024} + \frac{1}{4}\right)^{3}$$
195768715424625/18014398509481984
$$\frac{195768715424625}{18014398509481984}$$
3
/ 9 7 3 5\
\x + x - 3*x - 2*x + 3*x /
$$\left(x^{9} - 3 x^{7} + 3 x^{5} - 2 x^{3} + x\right)^{3}$$
(x + x^9 + 3.0*x^5 - 2.0*x^3 - 3.0*x^7)^3
Рациональный знаменатель
[src] 3
/ 9 7 3 5\
\x + x - 3*x - 2*x + 3*x /
$$\left(x^{9} - 3 x^{7} + 3 x^{5} - 2 x^{3} + x\right)^{3}$$
Объединение рациональных выражений
[src] 3
3 / 2 / 2 / 2 / 2\\\\
x *\1 + x *\-2 + x *\3 + x *\-3 + x ////
$$x^{3} \left(x^{2} \left(x^{2} \left(x^{2} \left(x^{2} - 3\right) + 3\right) - 2\right) + 1\right)^{3}$$
3
3 / 8 6 2 4\
x *\1 + x - 3*x - 2*x + 3*x /
$$x^{3} \left(x^{8} - 3 x^{6} + 3 x^{4} - 2 x^{2} + 1\right)^{3}$$
3
/ 9 5 3 7\
\x + x + 3*x - 2*x - 3*x /
$$\left(x^{9} - 3 x^{7} + 3 x^{5} - 2 x^{3} + x\right)^{3}$$
3 3
3 3 3 / 3 \ / 3 \
x *(1 + x) *(-1 + x) *\1 + x - x/ *\-1 + x - x/
$$x^{3} \left(x - 1\right)^{3} \left(x + 1\right)^{3} \left(x^{3} - x - 1\right)^{3} \left(x^{3} - x + 1\right)^{3}$$
3 27 17 13 21 9 25 5 7 23 11 19 15
x + x - 189*x - 156*x - 87*x - 53*x - 9*x - 6*x + 21*x + 36*x + 102*x + 147*x + 192*x
$$x^{27} - 9 x^{25} + 36 x^{23} - 87 x^{21} + 147 x^{19} - 189 x^{17} + 192 x^{15} - 156 x^{13} + 102 x^{11} - 53 x^{9} + 21 x^{7} - 6 x^{5} + x^{3}$$