6*sin(6*x)-4^acot(x)*log(4)*1/(1+x^2) если x=-1/3 (упростите выражение)

Выражение, которое надо упростить:

Решение

Вы ввели
[TeX]
[pretty]
[text]
              acot(x)       
             4       *log(4)
6*sin(6*x) - ---------------
                       2    
                  1 + x     
$$- \frac{4^{\operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (4 \right )} + 6 \sin{\left (6 x \right )}$$
Подстановка условия
[TeX]
[pretty]
[text]
6*sin(6*x) - 4^acot(x)*log(4)/(1 + x^2) при x = -1/3
6*sin(6*x) - 4^acot(x)*log(4)/(1 + x^2)
$$- \frac{4^{\operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (4 \right )} + 6 \sin{\left (6 x \right )}$$
6*sin(6*(-1/3)) - 4^acot((-1/3))*log(4)/(1 + (-1/3)^2)
$$- \frac{4^{\operatorname{acot}{\left ((-1/3) \right )}}}{(-1/3)^{2} + 1} \log{\left (4 \right )} + 6 \sin{\left (6 (-1/3) \right )}$$
6*sin(6*(-1)/3) - 4^acot(-1/3)*log(4)/(1 + (-1/3)^2)
$$6 \sin{\left (\frac{-6}{3} \right )} - \frac{\log{\left (4 \right )}}{4^{- \operatorname{acot}{\left (- \frac{1}{3} \right )}} \left(\left(- \frac{1}{3}\right)^{2} + 1\right)}$$
-6*sin(2) - 9*4^(-acot(1/3))*log(4)/10
$$- 6 \sin{\left (2 \right )} - \frac{9 \log{\left (4 \right )}}{10 \cdot 4^{\operatorname{acot}{\left (\frac{1}{3} \right )}}}$$
Степени
[TeX]
[pretty]
[text]
              2*acot(x)       
             2         *log(4)
6*sin(6*x) - -----------------
                        2     
                   1 + x      
$$- \frac{2^{2 \operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (4 \right )} + 6 \sin{\left (6 x \right )}$$
Численный ответ
[pretty]
[text]
6.0*sin(6*x) - 1.38629436111989*4.0^acot(x)/(1.0 + x^2)
Рациональный знаменатель
[TeX]
[pretty]
[text]
   acot(x)            /     2\         
- 4       *log(4) + 6*\1 + x /*sin(6*x)
---------------------------------------
                      2                
                 1 + x                 
$$\frac{1}{x^{2} + 1} \left(- 4^{\operatorname{acot}{\left (x \right )}} \log{\left (4 \right )} + 6 \left(x^{2} + 1\right) \sin{\left (6 x \right )}\right)$$
Объединение рациональных выражений
[TeX]
[pretty]
[text]
   acot(x)            /     2\         
- 4       *log(4) + 6*\1 + x /*sin(6*x)
---------------------------------------
                      2                
                 1 + x                 
$$\frac{1}{x^{2} + 1} \left(- 4^{\operatorname{acot}{\left (x \right )}} \log{\left (4 \right )} + 6 \left(x^{2} + 1\right) \sin{\left (6 x \right )}\right)$$
Общее упрощение
[TeX]
[pretty]
[text]
/       2\             acot(x)       
\6 + 6*x /*sin(6*x) - 4       *log(4)
-------------------------------------
                     2               
                1 + x                
$$\frac{1}{x^{2} + 1} \left(- 4^{\operatorname{acot}{\left (x \right )}} \log{\left (4 \right )} + \left(6 x^{2} + 6\right) \sin{\left (6 x \right )}\right)$$
Собрать выражение
[TeX]
[pretty]
[text]
/       2\             acot(x)       
\6 + 6*x /*sin(6*x) - 4       *log(4)
-------------------------------------
                     2               
                1 + x                
$$\frac{1}{x^{2} + 1} \left(- 4^{\operatorname{acot}{\left (x \right )}} \log{\left (4 \right )} + \left(6 x^{2} + 6\right) \sin{\left (6 x \right )}\right)$$
Общий знаменатель
[TeX]
[pretty]
[text]
                acot(x)       
             2*4       *log(2)
6*sin(6*x) - -----------------
                        2     
                   1 + x      
$$- \frac{2 \cdot 4^{\operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (2 \right )} + 6 \sin{\left (6 x \right )}$$
Комбинаторика
[TeX]
[pretty]
[text]
  /              acot(x)             2         \
2*\3*sin(6*x) - 4       *log(2) + 3*x *sin(6*x)/
------------------------------------------------
                          2                     
                     1 + x                      
$$\frac{1}{x^{2} + 1} \left(- 2 \cdot 4^{\operatorname{acot}{\left (x \right )}} \log{\left (2 \right )} + 6 x^{2} \sin{\left (6 x \right )} + 6 \sin{\left (6 x \right )}\right)$$
Раскрыть выражение
[TeX]
[pretty]
[text]
                                                                 acot(x)       
         3       3            5                   5             4       *log(4)
- 120*cos (x)*sin (x) + 36*cos (x)*sin(x) + 36*sin (x)*cos(x) - ---------------
                                                                          2    
                                                                     1 + x     
$$- \frac{4^{\operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (4 \right )} + 36 \sin^{5}{\left (x \right )} \cos{\left (x \right )} - 120 \sin^{3}{\left (x \right )} \cos^{3}{\left (x \right )} + 36 \sin{\left (x \right )} \cos^{5}{\left (x \right )}$$