6*sin(6*x)-4^acot(x)*log(4)*1/(1+x^2) если x=-1/3 (упростите выражение)

Выражение, которое надо упростить:
Например, 1/(a*x-1)-1/(a*x+1)

    Решение

    Вы ввели
    [LaTeX]
                  acot(x)       
                 4       *log(4)
    6*sin(6*x) - ---------------
                           2    
                      1 + x     
    $$- \frac{4^{\operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (4 \right )} + 6 \sin{\left (6 x \right )}$$
    Подстановка условия
    [LaTeX]
    6*sin(6*x) - 4^acot(x)*log(4)/(1 + x^2) при x = -1/3
    6*sin(6*x) - 4^acot(x)*log(4)/(1 + x^2)
    $$- \frac{4^{\operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (4 \right )} + 6 \sin{\left (6 x \right )}$$
    6*sin(6*(-1/3)) - 4^acot((-1/3))*log(4)/(1 + (-1/3)^2)
    $$- \frac{4^{\operatorname{acot}{\left ((-1/3) \right )}}}{(-1/3)^{2} + 1} \log{\left (4 \right )} + 6 \sin{\left (6 (-1/3) \right )}$$
    6*sin(6*(-1)/3) - 4^acot(-1/3)*log(4)/(1 + (-1/3)^2)
    $$6 \sin{\left (\frac{-6}{3} \right )} - \frac{\log{\left (4 \right )}}{4^{- \operatorname{acot}{\left (- \frac{1}{3} \right )}} \left(\left(- \frac{1}{3}\right)^{2} + 1\right)}$$
    -6*sin(2) - 9*4^(-acot(1/3))*log(4)/10
    $$- 6 \sin{\left (2 \right )} - \frac{9 \log{\left (4 \right )}}{10 \cdot 4^{\operatorname{acot}{\left (\frac{1}{3} \right )}}}$$
    Степени
    [LaTeX]
                  2*acot(x)       
                 2         *log(4)
    6*sin(6*x) - -----------------
                            2     
                       1 + x      
    $$- \frac{2^{2 \operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (4 \right )} + 6 \sin{\left (6 x \right )}$$
    Численный ответ
    [LaTeX]
    6.0*sin(6*x) - 1.38629436111989*4.0^acot(x)/(1.0 + x^2)
    Рациональный знаменатель
    [LaTeX]
       acot(x)            /     2\         
    - 4       *log(4) + 6*\1 + x /*sin(6*x)
    ---------------------------------------
                          2                
                     1 + x                 
    $$\frac{1}{x^{2} + 1} \left(- 4^{\operatorname{acot}{\left (x \right )}} \log{\left (4 \right )} + 6 \left(x^{2} + 1\right) \sin{\left (6 x \right )}\right)$$
    Объединение рациональных выражений
    [LaTeX]
       acot(x)            /     2\         
    - 4       *log(4) + 6*\1 + x /*sin(6*x)
    ---------------------------------------
                          2                
                     1 + x                 
    $$\frac{1}{x^{2} + 1} \left(- 4^{\operatorname{acot}{\left (x \right )}} \log{\left (4 \right )} + 6 \left(x^{2} + 1\right) \sin{\left (6 x \right )}\right)$$
    Общее упрощение
    [LaTeX]
    /       2\             acot(x)       
    \6 + 6*x /*sin(6*x) - 4       *log(4)
    -------------------------------------
                         2               
                    1 + x                
    $$\frac{1}{x^{2} + 1} \left(- 4^{\operatorname{acot}{\left (x \right )}} \log{\left (4 \right )} + \left(6 x^{2} + 6\right) \sin{\left (6 x \right )}\right)$$
    Собрать выражение
    [LaTeX]
    /       2\             acot(x)       
    \6 + 6*x /*sin(6*x) - 4       *log(4)
    -------------------------------------
                         2               
                    1 + x                
    $$\frac{1}{x^{2} + 1} \left(- 4^{\operatorname{acot}{\left (x \right )}} \log{\left (4 \right )} + \left(6 x^{2} + 6\right) \sin{\left (6 x \right )}\right)$$
    Общий знаменатель
    [LaTeX]
                    acot(x)       
                 2*4       *log(2)
    6*sin(6*x) - -----------------
                            2     
                       1 + x      
    $$- \frac{2 \cdot 4^{\operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (2 \right )} + 6 \sin{\left (6 x \right )}$$
    Комбинаторика
    [LaTeX]
      /              acot(x)             2         \
    2*\3*sin(6*x) - 4       *log(2) + 3*x *sin(6*x)/
    ------------------------------------------------
                              2                     
                         1 + x                      
    $$\frac{1}{x^{2} + 1} \left(- 2 \cdot 4^{\operatorname{acot}{\left (x \right )}} \log{\left (2 \right )} + 6 x^{2} \sin{\left (6 x \right )} + 6 \sin{\left (6 x \right )}\right)$$
    Раскрыть выражение
    [LaTeX]
                                                                     acot(x)       
             3       3            5                   5             4       *log(4)
    - 120*cos (x)*sin (x) + 36*cos (x)*sin(x) + 36*sin (x)*cos(x) - ---------------
                                                                              2    
                                                                         1 + x     
    $$- \frac{4^{\operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (4 \right )} + 36 \sin^{5}{\left (x \right )} \cos{\left (x \right )} - 120 \sin^{3}{\left (x \right )} \cos^{3}{\left (x \right )} + 36 \sin{\left (x \right )} \cos^{5}{\left (x \right )}$$