Разложение на множители
[src]/ ____\ / ____\ / ____ ____\ / ____ ____\ / ____ ____\ / ____ ____\
| 3 _____ 6 / 4 | | 3 _____ 6 / 4 | | 3 _____ 6 / 4 5/6 3 ____ 6 / 4 | | 3 _____ 6 / 4 5/6 3 ____ 6 / 4 | | 3 _____ 6 / 4 5/6 3 ____ 6 / 4 | | 3 _____ 6 / 4 5/6 3 ____ 6 / 4 |
| \/ 198 *\/ b | | \/ 198 *\/ b | | \/ 198 *\/ b I*3 *\/ 66 *\/ b | | \/ 198 *\/ b I*3 *\/ 66 *\/ b | | \/ 198 *\/ b I*3 *\/ 66 *\/ b | | \/ 198 *\/ b I*3 *\/ 66 *\/ b |
|a + ---------------|*|a - ---------------|*|a + --------------- + ---------------------|*|a + --------------- - ---------------------|*|a + - --------------- + ---------------------|*|a + - --------------- - ---------------------|
\ 6 / \ 6 / \ 12 12 / \ 12 12 / \ 12 12 / \ 12 12 /
$$\left(a - \frac{\sqrt[3]{198} \sqrt[6]{b^{4}}}{6}\right) \left(a + \frac{\sqrt[3]{198} \sqrt[6]{b^{4}}}{6}\right) \left(a + \left(\frac{\sqrt[3]{198} \sqrt[6]{b^{4}}}{12} + \frac{3^{\frac{5}{6}} \sqrt[3]{66} i \sqrt[6]{b^{4}}}{12}\right)\right) \left(a + \left(\frac{\sqrt[3]{198} \sqrt[6]{b^{4}}}{12} - \frac{3^{\frac{5}{6}} \sqrt[3]{66} i \sqrt[6]{b^{4}}}{12}\right)\right) \left(a + \left(- \frac{\sqrt[3]{198} \sqrt[6]{b^{4}}}{12} + \frac{3^{\frac{5}{6}} \sqrt[3]{66} i \sqrt[6]{b^{4}}}{12}\right)\right) \left(a + \left(- \frac{\sqrt[3]{198} \sqrt[6]{b^{4}}}{12} - \frac{3^{\frac{5}{6}} \sqrt[3]{66} i \sqrt[6]{b^{4}}}{12}\right)\right)$$