1. 2. 3. 4. 5. 6. Разложить на множители x^2+3*x-28 (х в квадрате плюс 3 умножить на х минус 28) - многочлен [Есть ответ!]

Разложить многочлен на множители x^2+3*x-28

Учитель очень удивится увидев твоё верное решение 😼

Решение

Разложение на множители [src]
(x + 7)*(x - 4)
$$\left(x - 4\right) \left(x + 7\right)$$
Объединение рациональных выражений [src]
-28 + x*(3 + x)
$$x \left(x + 3\right) - 28$$
Комбинаторика [src]
(-4 + x)*(7 + x)
$$\left(x - 4\right) \left(x + 7\right)$$
Выделение полного квадрата
Выделим полный квадрат из квадратного трёхчлена
$$\left(x^{2} + 3 x\right) - 28$$
Для этого воспользуемся формулой
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
где
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
В нашем случае
$$a = 1$$
$$b = 3$$
$$c = -28$$
Тогда
$$m = \frac{3}{2}$$
$$n = - \frac{121}{4}$$
Итак,
$$\left(x + \frac{3}{2}\right)^{2} - \frac{121}{4}$$