Объединение рациональных выражений
[src]2*(a*(a + b - c) + c*(a + c - b) - b*(a - b - c))
$$2 \left(a \left(a + b - c\right) - b \left(a - b - c\right) + c \left(a - b + c\right)\right)$$
b*(-2*a + 2*b + 2*c) + c*(-2*b + 2*a + 2*c) + 2*a*(a + b - c)
$$2 a \left(a + b - c\right) + b \left(- 2 a + 2 b + 2 c\right) + c \left(2 a - 2 b + 2 c\right)$$
-2*b*(a - b - c) + 2*a*(a + b - c) + 2*c*(a + c - b)
$$2 a \left(a + b - c\right) - 2 b \left(a - b - c\right) + 2 c \left(a - b + c\right)$$
b*(-2*a + 2*b + 2*c) + 2*a*(a + b - c) + 2*c*(a + c - b)
$$2 a \left(a + b - c\right) + b \left(- 2 a + 2 b + 2 c\right) + 2 c \left(a - b + c\right)$$
a*(-2*c + 2*a + 2*b) + b*(-2*a + 2*b + 2*c) + 2*c*(a + c - b)
$$a \left(2 a + 2 b - 2 c\right) + b \left(- 2 a + 2 b + 2 c\right) + 2 c \left(a - b + c\right)$$
a*(-2*c + 2*a + 2*b) + c*(-2*b + 2*a + 2*c) - 2*b*(a - b - c)
$$a \left(2 a + 2 b - 2 c\right) - 2 b \left(a - b - c\right) + c \left(2 a - 2 b + 2 c\right)$$
c*(-2*b + 2*a + 2*c) - 2*b*(a - b - c) + 2*a*(a + b - c)
$$2 a \left(a + b - c\right) - 2 b \left(a - b - c\right) + c \left(2 a - 2 b + 2 c\right)$$
a*(-2*c + 2*a + 2*b) - 2*b*(a - b - c) + 2*c*(a + c - b)
$$a \left(2 a + 2 b - 2 c\right) - 2 b \left(a - b - c\right) + 2 c \left(a - b + c\right)$$