/ 3/2 3/2\ / _____\
\a - b /*\a + b + 2*\/ a*b /
---------------------------------
/ _____\
(a - b)*\a + b + \/ a*b / $$\frac{\left(a^{\frac{3}{2}} - b^{\frac{3}{2}}\right) \left(a + b + 2 \sqrt{a b}\right)}{\left(a - b\right) \left(a + b + \sqrt{a b}\right)}$$
(a^1.5 - b^1.5)*(a + b + 2.0*(a*b)^0.5)/((a - b)*(a + b + (a*b)^0.5))
Рациональный знаменатель
[src] 7/2 7/2 3/2 2 5/2 _____ 2 3/2 5/2 _____ 3/2 _____ 3/2 _____
a - b + a *b + a *\/ a*b - a *b - b *\/ a*b + b*a *\/ a*b - a*b *\/ a*b
-----------------------------------------------------------------------------------------------
/ 2 2 \
(a - b)*\a + b + a*b/ $$\frac{1}{\left(a - b\right) \left(a^{2} + a b + b^{2}\right)} \left(a^{\frac{7}{2}} + a^{\frac{5}{2}} \sqrt{a b} + a^{\frac{3}{2}} b^{2} + a^{\frac{3}{2}} b \sqrt{a b} - a^{2} b^{\frac{3}{2}} - a b^{\frac{3}{2}} \sqrt{a b} - b^{\frac{7}{2}} - b^{\frac{5}{2}} \sqrt{a b}\right)$$
Объединение рациональных выражений
[src]/ 3/2 3/2\ / _____\
\a - b /*\a + b + 2*\/ a*b /
---------------------------------
/ _____\
(a - b)*\a + b + \/ a*b / $$\frac{\left(a^{\frac{3}{2}} - b^{\frac{3}{2}}\right) \left(a + b + 2 \sqrt{a b}\right)}{\left(a - b\right) \left(a + b + \sqrt{a b}\right)}$$
/ 3/2 3/2\ / _____\
\a - b /*\a + b + 2*\/ a*b /
---------------------------------
/ _____\
(a - b)*\a + b + \/ a*b / $$\frac{\left(a^{\frac{3}{2}} - b^{\frac{3}{2}}\right) \left(a + b + 2 \sqrt{a b}\right)}{\left(a - b\right) \left(a + b + \sqrt{a b}\right)}$$
/ 3/2 ___\ / _____\
\a - b*\/ b /*\a + b + 2*\/ a*b /
------------------------------------
/ _____\
(a - b)*\a + b + \/ a*b / $$\frac{\left(a^{\frac{3}{2}} - b^{\frac{3}{2}}\right) \left(a + b + 2 \sqrt{a b}\right)}{\left(a - b\right) \left(a + b + \sqrt{a b}\right)}$$
/ ___ ___\ / _____\
\a*\/ a - b*\/ b /*\a + b + 2*\/ a*b /
---------------------------------------
/ _____\
(a - b)*\a + b + \/ a*b / $$\frac{\left(\sqrt{a} a - b^{\frac{3}{2}}\right) \left(a + b + 2 \sqrt{a b}\right)}{\left(a - b\right) \left(a + b + \sqrt{a b}\right)}$$
/ 5/2 5/2 3/2 3/2 3/2 _____ 3/2 _____\
-\b - a + a*b - b*a - 2*a *\/ a*b + 2*b *\/ a*b /
-------------------------------------------------------------------
2 2 _____ _____
a - b + a*\/ a*b - b*\/ a*b $$- \frac{- a^{\frac{5}{2}} - a^{\frac{3}{2}} b - 2 a^{\frac{3}{2}} \sqrt{a b} + a b^{\frac{3}{2}} + b^{\frac{5}{2}} + 2 b^{\frac{3}{2}} \sqrt{a b}}{a^{2} + a \sqrt{a b} - b^{2} - b \sqrt{a b}}$$
/ ___ ___\ / _____\ / ___ ___\
\\/ a - \/ b /*\a + b + 2*\/ a*b /*\a + b + \/ a *\/ b /
---------------------------------------------------------
/ _____\
(a - b)*\a + b + \/ a*b / $$\frac{\left(\sqrt{a} - \sqrt{b}\right) \left(a + b + 2 \sqrt{a b}\right) \left(\sqrt{a} \sqrt{b} + a + b\right)}{\left(a - b\right) \left(a + b + \sqrt{a b}\right)}$$
/ ___ ___\ / ___ ___\
\a*\/ a - b*\/ b /*\a + b + 2*\/ a *\/ b /
-------------------------------------------
/ ___ ___\
(a - b)*\a + b + \/ a *\/ b / $$\frac{\left(\sqrt{a} a - b^{\frac{3}{2}}\right) \left(2 \sqrt{a} \sqrt{b} + a + b\right)}{\left(a - b\right) \left(\sqrt{a} \sqrt{b} + a + b\right)}$$